| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2wlkd.p |  |-  P = <" A B C "> | 
						
							| 2 |  | 2wlkd.f |  |-  F = <" J K "> | 
						
							| 3 |  | 2wlkd.s |  |-  ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) | 
						
							| 4 |  | 2wlkd.n |  |-  ( ph -> ( A =/= B /\ B =/= C ) ) | 
						
							| 5 |  | 2wlkd.e |  |-  ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) | 
						
							| 6 |  | 2wlkd.v |  |-  V = ( Vtx ` G ) | 
						
							| 7 |  | 2wlkd.i |  |-  I = ( iEdg ` G ) | 
						
							| 8 |  | 2trld.n |  |-  ( ph -> J =/= K ) | 
						
							| 9 | 1 2 3 4 5 6 7 | 2wlkond |  |-  ( ph -> F ( A ( WalksOn ` G ) C ) P ) | 
						
							| 10 | 1 2 3 4 5 6 7 8 | 2trld |  |-  ( ph -> F ( Trails ` G ) P ) | 
						
							| 11 | 3 | simp1d |  |-  ( ph -> A e. V ) | 
						
							| 12 | 3 | simp3d |  |-  ( ph -> C e. V ) | 
						
							| 13 |  | s2cli |  |-  <" J K "> e. Word _V | 
						
							| 14 | 2 13 | eqeltri |  |-  F e. Word _V | 
						
							| 15 | 14 | a1i |  |-  ( ph -> F e. Word _V ) | 
						
							| 16 |  | s3cli |  |-  <" A B C "> e. Word _V | 
						
							| 17 | 1 16 | eqeltri |  |-  P e. Word _V | 
						
							| 18 | 17 | a1i |  |-  ( ph -> P e. Word _V ) | 
						
							| 19 | 6 | istrlson |  |-  ( ( ( A e. V /\ C e. V ) /\ ( F e. Word _V /\ P e. Word _V ) ) -> ( F ( A ( TrailsOn ` G ) C ) P <-> ( F ( A ( WalksOn ` G ) C ) P /\ F ( Trails ` G ) P ) ) ) | 
						
							| 20 | 11 12 15 18 19 | syl22anc |  |-  ( ph -> ( F ( A ( TrailsOn ` G ) C ) P <-> ( F ( A ( WalksOn ` G ) C ) P /\ F ( Trails ` G ) P ) ) ) | 
						
							| 21 | 9 10 20 | mpbir2and |  |-  ( ph -> F ( A ( TrailsOn ` G ) C ) P ) |