Step |
Hyp |
Ref |
Expression |
1 |
|
2uasbanh.1 |
|- ( ch <-> ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) ) |
2 |
|
simpl |
|- ( ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> ( x = u /\ y = v ) ) |
3 |
|
simprl |
|- ( ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> ph ) |
4 |
2 3
|
jca |
|- ( ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> ( ( x = u /\ y = v ) /\ ph ) ) |
5 |
4
|
2eximi |
|- ( E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) |
6 |
|
simprr |
|- ( ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> ps ) |
7 |
2 6
|
jca |
|- ( ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> ( ( x = u /\ y = v ) /\ ps ) ) |
8 |
7
|
2eximi |
|- ( E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) |
9 |
5 8
|
jca |
|- ( E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) ) |
10 |
1
|
simplbi |
|- ( ch -> E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) |
11 |
|
simpl |
|- ( ( ( x = u /\ y = v ) /\ ph ) -> ( x = u /\ y = v ) ) |
12 |
11
|
2eximi |
|- ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) -> E. x E. y ( x = u /\ y = v ) ) |
13 |
10 12
|
syl |
|- ( ch -> E. x E. y ( x = u /\ y = v ) ) |
14 |
|
ax6e2ndeq |
|- ( ( -. A. x x = y \/ u = v ) <-> E. x E. y ( x = u /\ y = v ) ) |
15 |
13 14
|
sylibr |
|- ( ch -> ( -. A. x x = y \/ u = v ) ) |
16 |
|
2sb5nd |
|- ( ( -. A. x x = y \/ u = v ) -> ( [ u / x ] [ v / y ] ph <-> E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) ) |
17 |
15 16
|
syl |
|- ( ch -> ( [ u / x ] [ v / y ] ph <-> E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) ) |
18 |
10 17
|
mpbird |
|- ( ch -> [ u / x ] [ v / y ] ph ) |
19 |
1
|
simprbi |
|- ( ch -> E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) |
20 |
|
2sb5nd |
|- ( ( -. A. x x = y \/ u = v ) -> ( [ u / x ] [ v / y ] ps <-> E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) ) |
21 |
15 20
|
syl |
|- ( ch -> ( [ u / x ] [ v / y ] ps <-> E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) ) |
22 |
19 21
|
mpbird |
|- ( ch -> [ u / x ] [ v / y ] ps ) |
23 |
|
sban |
|- ( [ v / y ] ( ph /\ ps ) <-> ( [ v / y ] ph /\ [ v / y ] ps ) ) |
24 |
23
|
sbbii |
|- ( [ u / x ] [ v / y ] ( ph /\ ps ) <-> [ u / x ] ( [ v / y ] ph /\ [ v / y ] ps ) ) |
25 |
|
sban |
|- ( [ u / x ] ( [ v / y ] ph /\ [ v / y ] ps ) <-> ( [ u / x ] [ v / y ] ph /\ [ u / x ] [ v / y ] ps ) ) |
26 |
24 25
|
bitri |
|- ( [ u / x ] [ v / y ] ( ph /\ ps ) <-> ( [ u / x ] [ v / y ] ph /\ [ u / x ] [ v / y ] ps ) ) |
27 |
18 22 26
|
sylanbrc |
|- ( ch -> [ u / x ] [ v / y ] ( ph /\ ps ) ) |
28 |
|
2sb5nd |
|- ( ( -. A. x x = y \/ u = v ) -> ( [ u / x ] [ v / y ] ( ph /\ ps ) <-> E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ) ) |
29 |
15 28
|
syl |
|- ( ch -> ( [ u / x ] [ v / y ] ( ph /\ ps ) <-> E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ) ) |
30 |
27 29
|
mpbid |
|- ( ch -> E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ) |
31 |
1 30
|
sylbir |
|- ( ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) -> E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ) |
32 |
9 31
|
impbii |
|- ( E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) <-> ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) ) |