Metamath Proof Explorer


Theorem 2wlkdlem1

Description: Lemma 1 for 2wlkd . (Contributed by AV, 14-Feb-2021)

Ref Expression
Hypotheses 2wlkd.p
|- P = <" A B C ">
2wlkd.f
|- F = <" J K ">
Assertion 2wlkdlem1
|- ( # ` P ) = ( ( # ` F ) + 1 )

Proof

Step Hyp Ref Expression
1 2wlkd.p
 |-  P = <" A B C ">
2 2wlkd.f
 |-  F = <" J K ">
3 1 fveq2i
 |-  ( # ` P ) = ( # ` <" A B C "> )
4 s3len
 |-  ( # ` <" A B C "> ) = 3
5 df-3
 |-  3 = ( 2 + 1 )
6 4 5 eqtri
 |-  ( # ` <" A B C "> ) = ( 2 + 1 )
7 2 fveq2i
 |-  ( # ` F ) = ( # ` <" J K "> )
8 s2len
 |-  ( # ` <" J K "> ) = 2
9 7 8 eqtr2i
 |-  2 = ( # ` F )
10 9 oveq1i
 |-  ( 2 + 1 ) = ( ( # ` F ) + 1 )
11 6 10 eqtri
 |-  ( # ` <" A B C "> ) = ( ( # ` F ) + 1 )
12 3 11 eqtri
 |-  ( # ` P ) = ( ( # ` F ) + 1 )