Description: Lemma 1 for 2wlkd . (Contributed by AV, 14-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2wlkd.p | |- P = <" A B C "> | |
| 2wlkd.f | |- F = <" J K "> | ||
| Assertion | 2wlkdlem1 | |- ( # ` P ) = ( ( # ` F ) + 1 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2wlkd.p | |- P = <" A B C "> | |
| 2 | 2wlkd.f | |- F = <" J K "> | |
| 3 | 1 | fveq2i | |- ( # ` P ) = ( # ` <" A B C "> ) | 
| 4 | s3len | |- ( # ` <" A B C "> ) = 3 | |
| 5 | df-3 | |- 3 = ( 2 + 1 ) | |
| 6 | 4 5 | eqtri | |- ( # ` <" A B C "> ) = ( 2 + 1 ) | 
| 7 | 2 | fveq2i | |- ( # ` F ) = ( # ` <" J K "> ) | 
| 8 | s2len | |- ( # ` <" J K "> ) = 2 | |
| 9 | 7 8 | eqtr2i | |- 2 = ( # ` F ) | 
| 10 | 9 | oveq1i | |- ( 2 + 1 ) = ( ( # ` F ) + 1 ) | 
| 11 | 6 10 | eqtri | |- ( # ` <" A B C "> ) = ( ( # ` F ) + 1 ) | 
| 12 | 3 11 | eqtri | |- ( # ` P ) = ( ( # ` F ) + 1 ) |