Description: Lemma 2 for 2wlkd . (Contributed by AV, 14-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2wlkd.p | |- P = <" A B C "> | |
| 2wlkd.f | |- F = <" J K "> | ||
| Assertion | 2wlkdlem2 | |- ( 0 ..^ ( # ` F ) ) = { 0 , 1 } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2wlkd.p | |- P = <" A B C "> | |
| 2 | 2wlkd.f | |- F = <" J K "> | |
| 3 | 2 | fveq2i | |- ( # ` F ) = ( # ` <" J K "> ) | 
| 4 | s2len | |- ( # ` <" J K "> ) = 2 | |
| 5 | 3 4 | eqtri | |- ( # ` F ) = 2 | 
| 6 | 5 | oveq2i | |- ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 2 ) | 
| 7 | fzo0to2pr |  |-  ( 0 ..^ 2 ) = { 0 , 1 } | |
| 8 | 6 7 | eqtri |  |-  ( 0 ..^ ( # ` F ) ) = { 0 , 1 } |