| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2wlkd.p |  |-  P = <" A B C "> | 
						
							| 2 |  | 2wlkd.f |  |-  F = <" J K "> | 
						
							| 3 |  | 2wlkd.s |  |-  ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) | 
						
							| 4 | 1 | fveq1i |  |-  ( P ` 0 ) = ( <" A B C "> ` 0 ) | 
						
							| 5 |  | s3fv0 |  |-  ( A e. V -> ( <" A B C "> ` 0 ) = A ) | 
						
							| 6 | 4 5 | eqtrid |  |-  ( A e. V -> ( P ` 0 ) = A ) | 
						
							| 7 | 1 | fveq1i |  |-  ( P ` 1 ) = ( <" A B C "> ` 1 ) | 
						
							| 8 |  | s3fv1 |  |-  ( B e. V -> ( <" A B C "> ` 1 ) = B ) | 
						
							| 9 | 7 8 | eqtrid |  |-  ( B e. V -> ( P ` 1 ) = B ) | 
						
							| 10 | 1 | fveq1i |  |-  ( P ` 2 ) = ( <" A B C "> ` 2 ) | 
						
							| 11 |  | s3fv2 |  |-  ( C e. V -> ( <" A B C "> ` 2 ) = C ) | 
						
							| 12 | 10 11 | eqtrid |  |-  ( C e. V -> ( P ` 2 ) = C ) | 
						
							| 13 | 6 9 12 | 3anim123i |  |-  ( ( A e. V /\ B e. V /\ C e. V ) -> ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) | 
						
							| 14 | 3 13 | syl |  |-  ( ph -> ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) |