| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2wlkd.p |  |-  P = <" A B C "> | 
						
							| 2 |  | 2wlkd.f |  |-  F = <" J K "> | 
						
							| 3 |  | 2wlkd.s |  |-  ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) | 
						
							| 4 | 1 2 3 | 2wlkdlem3 |  |-  ( ph -> ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) | 
						
							| 5 |  | simp1 |  |-  ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 0 ) = A ) | 
						
							| 6 | 5 | eleq1d |  |-  ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( ( P ` 0 ) e. V <-> A e. V ) ) | 
						
							| 7 |  | simp2 |  |-  ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 1 ) = B ) | 
						
							| 8 | 7 | eleq1d |  |-  ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( ( P ` 1 ) e. V <-> B e. V ) ) | 
						
							| 9 |  | simp3 |  |-  ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 2 ) = C ) | 
						
							| 10 | 9 | eleq1d |  |-  ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( ( P ` 2 ) e. V <-> C e. V ) ) | 
						
							| 11 | 6 8 10 | 3anbi123d |  |-  ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ ( P ` 2 ) e. V ) <-> ( A e. V /\ B e. V /\ C e. V ) ) ) | 
						
							| 12 | 11 | bicomd |  |-  ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( ( A e. V /\ B e. V /\ C e. V ) <-> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ ( P ` 2 ) e. V ) ) ) | 
						
							| 13 | 4 12 | syl |  |-  ( ph -> ( ( A e. V /\ B e. V /\ C e. V ) <-> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ ( P ` 2 ) e. V ) ) ) | 
						
							| 14 | 3 13 | mpbid |  |-  ( ph -> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ ( P ` 2 ) e. V ) ) | 
						
							| 15 | 2 | fveq2i |  |-  ( # ` F ) = ( # ` <" J K "> ) | 
						
							| 16 |  | s2len |  |-  ( # ` <" J K "> ) = 2 | 
						
							| 17 | 15 16 | eqtri |  |-  ( # ` F ) = 2 | 
						
							| 18 | 17 | oveq2i |  |-  ( 0 ... ( # ` F ) ) = ( 0 ... 2 ) | 
						
							| 19 |  | fz0tp |  |-  ( 0 ... 2 ) = { 0 , 1 , 2 } | 
						
							| 20 | 18 19 | eqtri |  |-  ( 0 ... ( # ` F ) ) = { 0 , 1 , 2 } | 
						
							| 21 | 20 | raleqi |  |-  ( A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V <-> A. k e. { 0 , 1 , 2 } ( P ` k ) e. V ) | 
						
							| 22 |  | c0ex |  |-  0 e. _V | 
						
							| 23 |  | 1ex |  |-  1 e. _V | 
						
							| 24 |  | 2ex |  |-  2 e. _V | 
						
							| 25 |  | fveq2 |  |-  ( k = 0 -> ( P ` k ) = ( P ` 0 ) ) | 
						
							| 26 | 25 | eleq1d |  |-  ( k = 0 -> ( ( P ` k ) e. V <-> ( P ` 0 ) e. V ) ) | 
						
							| 27 |  | fveq2 |  |-  ( k = 1 -> ( P ` k ) = ( P ` 1 ) ) | 
						
							| 28 | 27 | eleq1d |  |-  ( k = 1 -> ( ( P ` k ) e. V <-> ( P ` 1 ) e. V ) ) | 
						
							| 29 |  | fveq2 |  |-  ( k = 2 -> ( P ` k ) = ( P ` 2 ) ) | 
						
							| 30 | 29 | eleq1d |  |-  ( k = 2 -> ( ( P ` k ) e. V <-> ( P ` 2 ) e. V ) ) | 
						
							| 31 | 22 23 24 26 28 30 | raltp |  |-  ( A. k e. { 0 , 1 , 2 } ( P ` k ) e. V <-> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ ( P ` 2 ) e. V ) ) | 
						
							| 32 | 21 31 | bitri |  |-  ( A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V <-> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ ( P ` 2 ) e. V ) ) | 
						
							| 33 | 14 32 | sylibr |  |-  ( ph -> A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V ) |