Step |
Hyp |
Ref |
Expression |
1 |
|
2wlkd.p |
|- P = <" A B C "> |
2 |
|
2wlkd.f |
|- F = <" J K "> |
3 |
|
2wlkd.s |
|- ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) |
4 |
|
2wlkd.n |
|- ( ph -> ( A =/= B /\ B =/= C ) ) |
5 |
1 2 3
|
2wlkdlem3 |
|- ( ph -> ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) |
6 |
|
simp1 |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 0 ) = A ) |
7 |
|
simp2 |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 1 ) = B ) |
8 |
6 7
|
neeq12d |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( ( P ` 0 ) =/= ( P ` 1 ) <-> A =/= B ) ) |
9 |
|
simp3 |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 2 ) = C ) |
10 |
7 9
|
neeq12d |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( ( P ` 1 ) =/= ( P ` 2 ) <-> B =/= C ) ) |
11 |
8 10
|
anbi12d |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) <-> ( A =/= B /\ B =/= C ) ) ) |
12 |
11
|
bicomd |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( ( A =/= B /\ B =/= C ) <-> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) ) |
13 |
5 12
|
syl |
|- ( ph -> ( ( A =/= B /\ B =/= C ) <-> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) ) |
14 |
4 13
|
mpbid |
|- ( ph -> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) |
15 |
1 2
|
2wlkdlem2 |
|- ( 0 ..^ ( # ` F ) ) = { 0 , 1 } |
16 |
15
|
raleqi |
|- ( A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) <-> A. k e. { 0 , 1 } ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
17 |
|
c0ex |
|- 0 e. _V |
18 |
|
1ex |
|- 1 e. _V |
19 |
|
fveq2 |
|- ( k = 0 -> ( P ` k ) = ( P ` 0 ) ) |
20 |
|
fv0p1e1 |
|- ( k = 0 -> ( P ` ( k + 1 ) ) = ( P ` 1 ) ) |
21 |
19 20
|
neeq12d |
|- ( k = 0 -> ( ( P ` k ) =/= ( P ` ( k + 1 ) ) <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
22 |
|
fveq2 |
|- ( k = 1 -> ( P ` k ) = ( P ` 1 ) ) |
23 |
|
oveq1 |
|- ( k = 1 -> ( k + 1 ) = ( 1 + 1 ) ) |
24 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
25 |
23 24
|
eqtrdi |
|- ( k = 1 -> ( k + 1 ) = 2 ) |
26 |
25
|
fveq2d |
|- ( k = 1 -> ( P ` ( k + 1 ) ) = ( P ` 2 ) ) |
27 |
22 26
|
neeq12d |
|- ( k = 1 -> ( ( P ` k ) =/= ( P ` ( k + 1 ) ) <-> ( P ` 1 ) =/= ( P ` 2 ) ) ) |
28 |
17 18 21 27
|
ralpr |
|- ( A. k e. { 0 , 1 } ( P ` k ) =/= ( P ` ( k + 1 ) ) <-> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) |
29 |
16 28
|
bitri |
|- ( A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) <-> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) |
30 |
14 29
|
sylibr |
|- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |