Step |
Hyp |
Ref |
Expression |
1 |
|
2wlkd.p |
|- P = <" A B C "> |
2 |
|
2wlkd.f |
|- F = <" J K "> |
3 |
|
2wlkd.s |
|- ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) |
4 |
|
2wlkd.n |
|- ( ph -> ( A =/= B /\ B =/= C ) ) |
5 |
|
2wlkd.e |
|- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) |
6 |
|
prcom |
|- { A , B } = { B , A } |
7 |
6
|
sseq1i |
|- ( { A , B } C_ ( I ` J ) <-> { B , A } C_ ( I ` J ) ) |
8 |
7
|
biimpi |
|- ( { A , B } C_ ( I ` J ) -> { B , A } C_ ( I ` J ) ) |
9 |
8
|
adantl |
|- ( ( ph /\ { A , B } C_ ( I ` J ) ) -> { B , A } C_ ( I ` J ) ) |
10 |
3
|
simp2d |
|- ( ph -> B e. V ) |
11 |
3
|
simp1d |
|- ( ph -> A e. V ) |
12 |
11
|
adantr |
|- ( ( ph /\ { A , B } C_ ( I ` J ) ) -> A e. V ) |
13 |
|
prssg |
|- ( ( B e. V /\ A e. V ) -> ( ( B e. ( I ` J ) /\ A e. ( I ` J ) ) <-> { B , A } C_ ( I ` J ) ) ) |
14 |
10 12 13
|
syl2an2r |
|- ( ( ph /\ { A , B } C_ ( I ` J ) ) -> ( ( B e. ( I ` J ) /\ A e. ( I ` J ) ) <-> { B , A } C_ ( I ` J ) ) ) |
15 |
9 14
|
mpbird |
|- ( ( ph /\ { A , B } C_ ( I ` J ) ) -> ( B e. ( I ` J ) /\ A e. ( I ` J ) ) ) |
16 |
15
|
simpld |
|- ( ( ph /\ { A , B } C_ ( I ` J ) ) -> B e. ( I ` J ) ) |
17 |
16
|
ex |
|- ( ph -> ( { A , B } C_ ( I ` J ) -> B e. ( I ` J ) ) ) |
18 |
|
simpr |
|- ( ( ph /\ { B , C } C_ ( I ` K ) ) -> { B , C } C_ ( I ` K ) ) |
19 |
3
|
simp3d |
|- ( ph -> C e. V ) |
20 |
19
|
adantr |
|- ( ( ph /\ { B , C } C_ ( I ` K ) ) -> C e. V ) |
21 |
|
prssg |
|- ( ( B e. V /\ C e. V ) -> ( ( B e. ( I ` K ) /\ C e. ( I ` K ) ) <-> { B , C } C_ ( I ` K ) ) ) |
22 |
10 20 21
|
syl2an2r |
|- ( ( ph /\ { B , C } C_ ( I ` K ) ) -> ( ( B e. ( I ` K ) /\ C e. ( I ` K ) ) <-> { B , C } C_ ( I ` K ) ) ) |
23 |
18 22
|
mpbird |
|- ( ( ph /\ { B , C } C_ ( I ` K ) ) -> ( B e. ( I ` K ) /\ C e. ( I ` K ) ) ) |
24 |
23
|
simpld |
|- ( ( ph /\ { B , C } C_ ( I ` K ) ) -> B e. ( I ` K ) ) |
25 |
24
|
ex |
|- ( ph -> ( { B , C } C_ ( I ` K ) -> B e. ( I ` K ) ) ) |
26 |
17 25
|
anim12d |
|- ( ph -> ( ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) -> ( B e. ( I ` J ) /\ B e. ( I ` K ) ) ) ) |
27 |
5 26
|
mpd |
|- ( ph -> ( B e. ( I ` J ) /\ B e. ( I ` K ) ) ) |