Metamath Proof Explorer


Theorem 2wlkdlem7

Description: Lemma 7 for 2wlkd . (Contributed by AV, 14-Feb-2021)

Ref Expression
Hypotheses 2wlkd.p
|- P = <" A B C ">
2wlkd.f
|- F = <" J K ">
2wlkd.s
|- ( ph -> ( A e. V /\ B e. V /\ C e. V ) )
2wlkd.n
|- ( ph -> ( A =/= B /\ B =/= C ) )
2wlkd.e
|- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) )
Assertion 2wlkdlem7
|- ( ph -> ( J e. _V /\ K e. _V ) )

Proof

Step Hyp Ref Expression
1 2wlkd.p
 |-  P = <" A B C ">
2 2wlkd.f
 |-  F = <" J K ">
3 2wlkd.s
 |-  ( ph -> ( A e. V /\ B e. V /\ C e. V ) )
4 2wlkd.n
 |-  ( ph -> ( A =/= B /\ B =/= C ) )
5 2wlkd.e
 |-  ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) )
6 1 2 3 4 5 2wlkdlem6
 |-  ( ph -> ( B e. ( I ` J ) /\ B e. ( I ` K ) ) )
7 elfvex
 |-  ( B e. ( I ` J ) -> J e. _V )
8 elfvex
 |-  ( B e. ( I ` K ) -> K e. _V )
9 7 8 anim12i
 |-  ( ( B e. ( I ` J ) /\ B e. ( I ` K ) ) -> ( J e. _V /\ K e. _V ) )
10 6 9 syl
 |-  ( ph -> ( J e. _V /\ K e. _V ) )