| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2wlkd.p |  |-  P = <" A B C "> | 
						
							| 2 |  | 2wlkd.f |  |-  F = <" J K "> | 
						
							| 3 |  | 2wlkd.s |  |-  ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) | 
						
							| 4 |  | 2wlkd.n |  |-  ( ph -> ( A =/= B /\ B =/= C ) ) | 
						
							| 5 |  | 2wlkd.e |  |-  ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) | 
						
							| 6 | 1 2 3 4 5 | 2wlkdlem6 |  |-  ( ph -> ( B e. ( I ` J ) /\ B e. ( I ` K ) ) ) | 
						
							| 7 |  | elfvex |  |-  ( B e. ( I ` J ) -> J e. _V ) | 
						
							| 8 |  | elfvex |  |-  ( B e. ( I ` K ) -> K e. _V ) | 
						
							| 9 | 7 8 | anim12i |  |-  ( ( B e. ( I ` J ) /\ B e. ( I ` K ) ) -> ( J e. _V /\ K e. _V ) ) | 
						
							| 10 | 6 9 | syl |  |-  ( ph -> ( J e. _V /\ K e. _V ) ) |