| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2wlkd.p |  |-  P = <" A B C "> | 
						
							| 2 |  | 2wlkd.f |  |-  F = <" J K "> | 
						
							| 3 |  | 2wlkd.s |  |-  ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) | 
						
							| 4 |  | 2wlkd.n |  |-  ( ph -> ( A =/= B /\ B =/= C ) ) | 
						
							| 5 |  | 2wlkd.e |  |-  ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) | 
						
							| 6 | 1 2 3 4 5 | 2wlkdlem8 |  |-  ( ph -> ( ( F ` 0 ) = J /\ ( F ` 1 ) = K ) ) | 
						
							| 7 |  | fveq2 |  |-  ( ( F ` 0 ) = J -> ( I ` ( F ` 0 ) ) = ( I ` J ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( ( F ` 0 ) = J /\ ( F ` 1 ) = K ) -> ( I ` ( F ` 0 ) ) = ( I ` J ) ) | 
						
							| 9 | 8 | sseq2d |  |-  ( ( ( F ` 0 ) = J /\ ( F ` 1 ) = K ) -> ( { A , B } C_ ( I ` ( F ` 0 ) ) <-> { A , B } C_ ( I ` J ) ) ) | 
						
							| 10 |  | fveq2 |  |-  ( ( F ` 1 ) = K -> ( I ` ( F ` 1 ) ) = ( I ` K ) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ( F ` 0 ) = J /\ ( F ` 1 ) = K ) -> ( I ` ( F ` 1 ) ) = ( I ` K ) ) | 
						
							| 12 | 11 | sseq2d |  |-  ( ( ( F ` 0 ) = J /\ ( F ` 1 ) = K ) -> ( { B , C } C_ ( I ` ( F ` 1 ) ) <-> { B , C } C_ ( I ` K ) ) ) | 
						
							| 13 | 9 12 | anbi12d |  |-  ( ( ( F ` 0 ) = J /\ ( F ` 1 ) = K ) -> ( ( { A , B } C_ ( I ` ( F ` 0 ) ) /\ { B , C } C_ ( I ` ( F ` 1 ) ) ) <-> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) ) | 
						
							| 14 | 6 13 | syl |  |-  ( ph -> ( ( { A , B } C_ ( I ` ( F ` 0 ) ) /\ { B , C } C_ ( I ` ( F ` 1 ) ) ) <-> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) ) | 
						
							| 15 | 5 14 | mpbird |  |-  ( ph -> ( { A , B } C_ ( I ` ( F ` 0 ) ) /\ { B , C } C_ ( I ` ( F ` 1 ) ) ) ) |