| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2wlkd.p |  |-  P = <" A B C "> | 
						
							| 2 |  | 2wlkd.f |  |-  F = <" J K "> | 
						
							| 3 |  | 2wlkd.s |  |-  ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) | 
						
							| 4 |  | 2wlkd.n |  |-  ( ph -> ( A =/= B /\ B =/= C ) ) | 
						
							| 5 |  | 2wlkd.e |  |-  ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) | 
						
							| 6 |  | 2wlkd.v |  |-  V = ( Vtx ` G ) | 
						
							| 7 |  | 2wlkd.i |  |-  I = ( iEdg ` G ) | 
						
							| 8 | 1 2 3 4 5 6 7 | 2wlkd |  |-  ( ph -> F ( Walks ` G ) P ) | 
						
							| 9 | 3 | simp1d |  |-  ( ph -> A e. V ) | 
						
							| 10 | 1 | fveq1i |  |-  ( P ` 0 ) = ( <" A B C "> ` 0 ) | 
						
							| 11 |  | s3fv0 |  |-  ( A e. V -> ( <" A B C "> ` 0 ) = A ) | 
						
							| 12 | 10 11 | eqtrid |  |-  ( A e. V -> ( P ` 0 ) = A ) | 
						
							| 13 | 9 12 | syl |  |-  ( ph -> ( P ` 0 ) = A ) | 
						
							| 14 | 2 | fveq2i |  |-  ( # ` F ) = ( # ` <" J K "> ) | 
						
							| 15 |  | s2len |  |-  ( # ` <" J K "> ) = 2 | 
						
							| 16 | 14 15 | eqtri |  |-  ( # ` F ) = 2 | 
						
							| 17 | 1 16 | fveq12i |  |-  ( P ` ( # ` F ) ) = ( <" A B C "> ` 2 ) | 
						
							| 18 | 3 | simp3d |  |-  ( ph -> C e. V ) | 
						
							| 19 |  | s3fv2 |  |-  ( C e. V -> ( <" A B C "> ` 2 ) = C ) | 
						
							| 20 | 18 19 | syl |  |-  ( ph -> ( <" A B C "> ` 2 ) = C ) | 
						
							| 21 | 17 20 | eqtrid |  |-  ( ph -> ( P ` ( # ` F ) ) = C ) | 
						
							| 22 |  | 3simpb |  |-  ( ( A e. V /\ B e. V /\ C e. V ) -> ( A e. V /\ C e. V ) ) | 
						
							| 23 | 3 22 | syl |  |-  ( ph -> ( A e. V /\ C e. V ) ) | 
						
							| 24 |  | s2cli |  |-  <" J K "> e. Word _V | 
						
							| 25 | 2 24 | eqeltri |  |-  F e. Word _V | 
						
							| 26 |  | s3cli |  |-  <" A B C "> e. Word _V | 
						
							| 27 | 1 26 | eqeltri |  |-  P e. Word _V | 
						
							| 28 | 25 27 | pm3.2i |  |-  ( F e. Word _V /\ P e. Word _V ) | 
						
							| 29 | 6 | iswlkon |  |-  ( ( ( A e. V /\ C e. V ) /\ ( F e. Word _V /\ P e. Word _V ) ) -> ( F ( A ( WalksOn ` G ) C ) P <-> ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = C ) ) ) | 
						
							| 30 | 23 28 29 | sylancl |  |-  ( ph -> ( F ( A ( WalksOn ` G ) C ) P <-> ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = C ) ) ) | 
						
							| 31 | 8 13 21 30 | mpbir3and |  |-  ( ph -> F ( A ( WalksOn ` G ) C ) P ) |