| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|- ( a = c -> ( a ( 2 WSPathsNOn G ) b ) = ( c ( 2 WSPathsNOn G ) b ) ) |
| 2 |
|
oveq2 |
|- ( b = d -> ( c ( 2 WSPathsNOn G ) b ) = ( c ( 2 WSPathsNOn G ) d ) ) |
| 3 |
|
sneq |
|- ( a = c -> { a } = { c } ) |
| 4 |
3
|
difeq2d |
|- ( a = c -> ( V \ { a } ) = ( V \ { c } ) ) |
| 5 |
|
wspthneq1eq2 |
|- ( ( t e. ( a ( 2 WSPathsNOn G ) b ) /\ t e. ( c ( 2 WSPathsNOn G ) d ) ) -> ( a = c /\ b = d ) ) |
| 6 |
5
|
simpld |
|- ( ( t e. ( a ( 2 WSPathsNOn G ) b ) /\ t e. ( c ( 2 WSPathsNOn G ) d ) ) -> a = c ) |
| 7 |
6
|
3adant1 |
|- ( ( T. /\ t e. ( a ( 2 WSPathsNOn G ) b ) /\ t e. ( c ( 2 WSPathsNOn G ) d ) ) -> a = c ) |
| 8 |
1 2 4 7
|
disjiund |
|- ( T. -> Disj_ a e. V U_ b e. ( V \ { a } ) ( a ( 2 WSPathsNOn G ) b ) ) |
| 9 |
8
|
mptru |
|- Disj_ a e. V U_ b e. ( V \ { a } ) ( a ( 2 WSPathsNOn G ) b ) |