Metamath Proof Explorer


Theorem 317prm

Description: 317 is a prime number. (Contributed by Mario Carneiro, 19-Feb-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 317prm
|- ; ; 3 1 7 e. Prime

Proof

Step Hyp Ref Expression
1 3nn0
 |-  3 e. NN0
2 1nn0
 |-  1 e. NN0
3 1 2 deccl
 |-  ; 3 1 e. NN0
4 7nn
 |-  7 e. NN
5 3 4 decnncl
 |-  ; ; 3 1 7 e. NN
6 8nn0
 |-  8 e. NN0
7 4nn0
 |-  4 e. NN0
8 7nn0
 |-  7 e. NN0
9 3lt8
 |-  3 < 8
10 1lt10
 |-  1 < ; 1 0
11 7lt10
 |-  7 < ; 1 0
12 1 6 2 7 8 2 9 10 11 3decltc
 |-  ; ; 3 1 7 < ; ; 8 4 1
13 1nn
 |-  1 e. NN
14 1 13 decnncl
 |-  ; 3 1 e. NN
15 14 8 2 10 declti
 |-  1 < ; ; 3 1 7
16 3t2e6
 |-  ( 3 x. 2 ) = 6
17 df-7
 |-  7 = ( 6 + 1 )
18 3 1 16 17 dec2dvds
 |-  -. 2 || ; ; 3 1 7
19 3nn
 |-  3 e. NN
20 10nn0
 |-  ; 1 0 e. NN0
21 5nn0
 |-  5 e. NN0
22 20 21 deccl
 |-  ; ; 1 0 5 e. NN0
23 2nn
 |-  2 e. NN
24 0nn0
 |-  0 e. NN0
25 2nn0
 |-  2 e. NN0
26 eqid
 |-  ; ; 1 0 5 = ; ; 1 0 5
27 25 dec0h
 |-  2 = ; 0 2
28 eqid
 |-  ; 1 0 = ; 1 0
29 ax-1cn
 |-  1 e. CC
30 29 addid2i
 |-  ( 0 + 1 ) = 1
31 2 dec0h
 |-  1 = ; 0 1
32 30 31 eqtri
 |-  ( 0 + 1 ) = ; 0 1
33 3cn
 |-  3 e. CC
34 33 mulid1i
 |-  ( 3 x. 1 ) = 3
35 00id
 |-  ( 0 + 0 ) = 0
36 34 35 oveq12i
 |-  ( ( 3 x. 1 ) + ( 0 + 0 ) ) = ( 3 + 0 )
37 33 addid1i
 |-  ( 3 + 0 ) = 3
38 36 37 eqtri
 |-  ( ( 3 x. 1 ) + ( 0 + 0 ) ) = 3
39 33 mul01i
 |-  ( 3 x. 0 ) = 0
40 39 oveq1i
 |-  ( ( 3 x. 0 ) + 1 ) = ( 0 + 1 )
41 40 30 eqtri
 |-  ( ( 3 x. 0 ) + 1 ) = 1
42 41 31 eqtri
 |-  ( ( 3 x. 0 ) + 1 ) = ; 0 1
43 2 24 24 2 28 32 1 2 24 38 42 decma2c
 |-  ( ( 3 x. ; 1 0 ) + ( 0 + 1 ) ) = ; 3 1
44 5cn
 |-  5 e. CC
45 5t3e15
 |-  ( 5 x. 3 ) = ; 1 5
46 44 33 45 mulcomli
 |-  ( 3 x. 5 ) = ; 1 5
47 5p2e7
 |-  ( 5 + 2 ) = 7
48 2 21 25 46 47 decaddi
 |-  ( ( 3 x. 5 ) + 2 ) = ; 1 7
49 20 21 24 25 26 27 1 8 2 43 48 decma2c
 |-  ( ( 3 x. ; ; 1 0 5 ) + 2 ) = ; ; 3 1 7
50 2lt3
 |-  2 < 3
51 19 22 23 49 50 ndvdsi
 |-  -. 3 || ; ; 3 1 7
52 2lt5
 |-  2 < 5
53 3 23 52 47 dec5dvds2
 |-  -. 5 || ; ; 3 1 7
54 7 21 deccl
 |-  ; 4 5 e. NN0
55 eqid
 |-  ; 4 5 = ; 4 5
56 33 addid2i
 |-  ( 0 + 3 ) = 3
57 56 oveq2i
 |-  ( ( 7 x. 4 ) + ( 0 + 3 ) ) = ( ( 7 x. 4 ) + 3 )
58 7t4e28
 |-  ( 7 x. 4 ) = ; 2 8
59 2p1e3
 |-  ( 2 + 1 ) = 3
60 8p3e11
 |-  ( 8 + 3 ) = ; 1 1
61 25 6 1 58 59 2 60 decaddci
 |-  ( ( 7 x. 4 ) + 3 ) = ; 3 1
62 57 61 eqtri
 |-  ( ( 7 x. 4 ) + ( 0 + 3 ) ) = ; 3 1
63 7t5e35
 |-  ( 7 x. 5 ) = ; 3 5
64 1 21 25 63 47 decaddi
 |-  ( ( 7 x. 5 ) + 2 ) = ; 3 7
65 7 21 24 25 55 27 8 8 1 62 64 decma2c
 |-  ( ( 7 x. ; 4 5 ) + 2 ) = ; ; 3 1 7
66 2lt7
 |-  2 < 7
67 4 54 23 65 66 ndvdsi
 |-  -. 7 || ; ; 3 1 7
68 2 13 decnncl
 |-  ; 1 1 e. NN
69 25 6 deccl
 |-  ; 2 8 e. NN0
70 9nn
 |-  9 e. NN
71 9nn0
 |-  9 e. NN0
72 eqid
 |-  ; 2 8 = ; 2 8
73 71 dec0h
 |-  9 = ; 0 9
74 2 2 deccl
 |-  ; 1 1 e. NN0
75 eqid
 |-  ; 1 1 = ; 1 1
76 9cn
 |-  9 e. CC
77 76 addid2i
 |-  ( 0 + 9 ) = 9
78 77 73 eqtri
 |-  ( 0 + 9 ) = ; 0 9
79 2cn
 |-  2 e. CC
80 79 mulid2i
 |-  ( 1 x. 2 ) = 2
81 80 30 oveq12i
 |-  ( ( 1 x. 2 ) + ( 0 + 1 ) ) = ( 2 + 1 )
82 81 59 eqtri
 |-  ( ( 1 x. 2 ) + ( 0 + 1 ) ) = 3
83 80 oveq1i
 |-  ( ( 1 x. 2 ) + 9 ) = ( 2 + 9 )
84 9p2e11
 |-  ( 9 + 2 ) = ; 1 1
85 76 79 84 addcomli
 |-  ( 2 + 9 ) = ; 1 1
86 83 85 eqtri
 |-  ( ( 1 x. 2 ) + 9 ) = ; 1 1
87 2 2 24 71 75 78 25 2 2 82 86 decmac
 |-  ( ( ; 1 1 x. 2 ) + ( 0 + 9 ) ) = ; 3 1
88 8cn
 |-  8 e. CC
89 88 mulid2i
 |-  ( 1 x. 8 ) = 8
90 89 30 oveq12i
 |-  ( ( 1 x. 8 ) + ( 0 + 1 ) ) = ( 8 + 1 )
91 8p1e9
 |-  ( 8 + 1 ) = 9
92 90 91 eqtri
 |-  ( ( 1 x. 8 ) + ( 0 + 1 ) ) = 9
93 89 oveq1i
 |-  ( ( 1 x. 8 ) + 9 ) = ( 8 + 9 )
94 9p8e17
 |-  ( 9 + 8 ) = ; 1 7
95 76 88 94 addcomli
 |-  ( 8 + 9 ) = ; 1 7
96 93 95 eqtri
 |-  ( ( 1 x. 8 ) + 9 ) = ; 1 7
97 2 2 24 71 75 73 6 8 2 92 96 decmac
 |-  ( ( ; 1 1 x. 8 ) + 9 ) = ; 9 7
98 25 6 24 71 72 73 74 8 71 87 97 decma2c
 |-  ( ( ; 1 1 x. ; 2 8 ) + 9 ) = ; ; 3 1 7
99 9lt10
 |-  9 < ; 1 0
100 13 2 71 99 declti
 |-  9 < ; 1 1
101 68 69 70 98 100 ndvdsi
 |-  -. ; 1 1 || ; ; 3 1 7
102 2 19 decnncl
 |-  ; 1 3 e. NN
103 25 7 deccl
 |-  ; 2 4 e. NN0
104 5nn
 |-  5 e. NN
105 eqid
 |-  ; 2 4 = ; 2 4
106 21 dec0h
 |-  5 = ; 0 5
107 2 1 deccl
 |-  ; 1 3 e. NN0
108 eqid
 |-  ; 1 3 = ; 1 3
109 44 addid2i
 |-  ( 0 + 5 ) = 5
110 109 106 eqtri
 |-  ( 0 + 5 ) = ; 0 5
111 16 oveq1i
 |-  ( ( 3 x. 2 ) + 5 ) = ( 6 + 5 )
112 6p5e11
 |-  ( 6 + 5 ) = ; 1 1
113 111 112 eqtri
 |-  ( ( 3 x. 2 ) + 5 ) = ; 1 1
114 2 1 24 21 108 110 25 2 2 82 113 decmac
 |-  ( ( ; 1 3 x. 2 ) + ( 0 + 5 ) ) = ; 3 1
115 4cn
 |-  4 e. CC
116 115 mulid2i
 |-  ( 1 x. 4 ) = 4
117 116 30 oveq12i
 |-  ( ( 1 x. 4 ) + ( 0 + 1 ) ) = ( 4 + 1 )
118 4p1e5
 |-  ( 4 + 1 ) = 5
119 117 118 eqtri
 |-  ( ( 1 x. 4 ) + ( 0 + 1 ) ) = 5
120 4t3e12
 |-  ( 4 x. 3 ) = ; 1 2
121 115 33 120 mulcomli
 |-  ( 3 x. 4 ) = ; 1 2
122 44 79 47 addcomli
 |-  ( 2 + 5 ) = 7
123 2 25 21 121 122 decaddi
 |-  ( ( 3 x. 4 ) + 5 ) = ; 1 7
124 2 1 24 21 108 106 7 8 2 119 123 decmac
 |-  ( ( ; 1 3 x. 4 ) + 5 ) = ; 5 7
125 25 7 24 21 105 106 107 8 21 114 124 decma2c
 |-  ( ( ; 1 3 x. ; 2 4 ) + 5 ) = ; ; 3 1 7
126 5lt10
 |-  5 < ; 1 0
127 13 1 21 126 declti
 |-  5 < ; 1 3
128 102 103 104 125 127 ndvdsi
 |-  -. ; 1 3 || ; ; 3 1 7
129 2 4 decnncl
 |-  ; 1 7 e. NN
130 2 6 deccl
 |-  ; 1 8 e. NN0
131 eqid
 |-  ; 1 8 = ; 1 8
132 2 8 deccl
 |-  ; 1 7 e. NN0
133 eqid
 |-  ; 1 7 = ; 1 7
134 3p1e4
 |-  ( 3 + 1 ) = 4
135 33 29 134 addcomli
 |-  ( 1 + 3 ) = 4
136 24 2 2 1 31 108 30 135 decadd
 |-  ( 1 + ; 1 3 ) = ; 1 4
137 29 mulid1i
 |-  ( 1 x. 1 ) = 1
138 1p1e2
 |-  ( 1 + 1 ) = 2
139 137 138 oveq12i
 |-  ( ( 1 x. 1 ) + ( 1 + 1 ) ) = ( 1 + 2 )
140 1p2e3
 |-  ( 1 + 2 ) = 3
141 139 140 eqtri
 |-  ( ( 1 x. 1 ) + ( 1 + 1 ) ) = 3
142 7cn
 |-  7 e. CC
143 142 mulid1i
 |-  ( 7 x. 1 ) = 7
144 143 oveq1i
 |-  ( ( 7 x. 1 ) + 4 ) = ( 7 + 4 )
145 7p4e11
 |-  ( 7 + 4 ) = ; 1 1
146 144 145 eqtri
 |-  ( ( 7 x. 1 ) + 4 ) = ; 1 1
147 2 8 2 7 133 136 2 2 2 141 146 decmac
 |-  ( ( ; 1 7 x. 1 ) + ( 1 + ; 1 3 ) ) = ; 3 1
148 89 109 oveq12i
 |-  ( ( 1 x. 8 ) + ( 0 + 5 ) ) = ( 8 + 5 )
149 8p5e13
 |-  ( 8 + 5 ) = ; 1 3
150 148 149 eqtri
 |-  ( ( 1 x. 8 ) + ( 0 + 5 ) ) = ; 1 3
151 6nn0
 |-  6 e. NN0
152 6p1e7
 |-  ( 6 + 1 ) = 7
153 8t7e56
 |-  ( 8 x. 7 ) = ; 5 6
154 88 142 153 mulcomli
 |-  ( 7 x. 8 ) = ; 5 6
155 21 151 152 154 decsuc
 |-  ( ( 7 x. 8 ) + 1 ) = ; 5 7
156 2 8 24 2 133 31 6 8 21 150 155 decmac
 |-  ( ( ; 1 7 x. 8 ) + 1 ) = ; ; 1 3 7
157 2 6 2 2 131 75 132 8 107 147 156 decma2c
 |-  ( ( ; 1 7 x. ; 1 8 ) + ; 1 1 ) = ; ; 3 1 7
158 1lt7
 |-  1 < 7
159 2 2 4 158 declt
 |-  ; 1 1 < ; 1 7
160 129 130 68 157 159 ndvdsi
 |-  -. ; 1 7 || ; ; 3 1 7
161 2 70 decnncl
 |-  ; 1 9 e. NN
162 2 151 deccl
 |-  ; 1 6 e. NN0
163 eqid
 |-  ; 1 6 = ; 1 6
164 2 71 deccl
 |-  ; 1 9 e. NN0
165 eqid
 |-  ; 1 9 = ; 1 9
166 24 2 2 2 31 75 30 138 decadd
 |-  ( 1 + ; 1 1 ) = ; 1 2
167 76 mulid1i
 |-  ( 9 x. 1 ) = 9
168 167 oveq1i
 |-  ( ( 9 x. 1 ) + 2 ) = ( 9 + 2 )
169 168 84 eqtri
 |-  ( ( 9 x. 1 ) + 2 ) = ; 1 1
170 2 71 2 25 165 166 2 2 2 141 169 decmac
 |-  ( ( ; 1 9 x. 1 ) + ( 1 + ; 1 1 ) ) = ; 3 1
171 1 dec0h
 |-  3 = ; 0 3
172 6cn
 |-  6 e. CC
173 172 mulid2i
 |-  ( 1 x. 6 ) = 6
174 173 109 oveq12i
 |-  ( ( 1 x. 6 ) + ( 0 + 5 ) ) = ( 6 + 5 )
175 174 112 eqtri
 |-  ( ( 1 x. 6 ) + ( 0 + 5 ) ) = ; 1 1
176 9t6e54
 |-  ( 9 x. 6 ) = ; 5 4
177 4p3e7
 |-  ( 4 + 3 ) = 7
178 21 7 1 176 177 decaddi
 |-  ( ( 9 x. 6 ) + 3 ) = ; 5 7
179 2 71 24 1 165 171 151 8 21 175 178 decmac
 |-  ( ( ; 1 9 x. 6 ) + 3 ) = ; ; 1 1 7
180 2 151 2 1 163 108 164 8 74 170 179 decma2c
 |-  ( ( ; 1 9 x. ; 1 6 ) + ; 1 3 ) = ; ; 3 1 7
181 3lt9
 |-  3 < 9
182 2 1 70 181 declt
 |-  ; 1 3 < ; 1 9
183 161 162 102 180 182 ndvdsi
 |-  -. ; 1 9 || ; ; 3 1 7
184 25 19 decnncl
 |-  ; 2 3 e. NN
185 102 nnnn0i
 |-  ; 1 3 e. NN0
186 8nn
 |-  8 e. NN
187 2 186 decnncl
 |-  ; 1 8 e. NN
188 25 1 deccl
 |-  ; 2 3 e. NN0
189 eqid
 |-  ; 2 3 = ; 2 3
190 7p1e8
 |-  ( 7 + 1 ) = 8
191 142 29 190 addcomli
 |-  ( 1 + 7 ) = 8
192 6 dec0h
 |-  8 = ; 0 8
193 191 192 eqtri
 |-  ( 1 + 7 ) = ; 0 8
194 79 mulid1i
 |-  ( 2 x. 1 ) = 2
195 194 30 oveq12i
 |-  ( ( 2 x. 1 ) + ( 0 + 1 ) ) = ( 2 + 1 )
196 195 59 eqtri
 |-  ( ( 2 x. 1 ) + ( 0 + 1 ) ) = 3
197 34 oveq1i
 |-  ( ( 3 x. 1 ) + 8 ) = ( 3 + 8 )
198 88 33 60 addcomli
 |-  ( 3 + 8 ) = ; 1 1
199 197 198 eqtri
 |-  ( ( 3 x. 1 ) + 8 ) = ; 1 1
200 25 1 24 6 189 193 2 2 2 196 199 decmac
 |-  ( ( ; 2 3 x. 1 ) + ( 1 + 7 ) ) = ; 3 1
201 33 79 16 mulcomli
 |-  ( 2 x. 3 ) = 6
202 201 30 oveq12i
 |-  ( ( 2 x. 3 ) + ( 0 + 1 ) ) = ( 6 + 1 )
203 202 152 eqtri
 |-  ( ( 2 x. 3 ) + ( 0 + 1 ) ) = 7
204 3t3e9
 |-  ( 3 x. 3 ) = 9
205 204 oveq1i
 |-  ( ( 3 x. 3 ) + 8 ) = ( 9 + 8 )
206 205 94 eqtri
 |-  ( ( 3 x. 3 ) + 8 ) = ; 1 7
207 25 1 24 6 189 192 1 8 2 203 206 decmac
 |-  ( ( ; 2 3 x. 3 ) + 8 ) = ; 7 7
208 2 1 2 6 108 131 188 8 8 200 207 decma2c
 |-  ( ( ; 2 3 x. ; 1 3 ) + ; 1 8 ) = ; ; 3 1 7
209 8lt10
 |-  8 < ; 1 0
210 1lt2
 |-  1 < 2
211 2 25 6 1 209 210 decltc
 |-  ; 1 8 < ; 2 3
212 184 185 187 208 211 ndvdsi
 |-  -. ; 2 3 || ; ; 3 1 7
213 5 12 15 18 51 53 67 101 128 160 183 212 prmlem2
 |-  ; ; 3 1 7 e. Prime