Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3ad2antl.1 | |- ( ( ph /\ ch ) -> th ) |
|
| Assertion | 3ad2antl1 | |- ( ( ( ph /\ ps /\ ta ) /\ ch ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | |- ( ( ph /\ ch ) -> th ) |
|
| 2 | 1 | adantlr | |- ( ( ( ph /\ ta ) /\ ch ) -> th ) |
| 3 | 2 | 3adantl2 | |- ( ( ( ph /\ ps /\ ta ) /\ ch ) -> th ) |