Metamath Proof Explorer


Theorem 3ad2antl1

Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007)

Ref Expression
Hypothesis 3ad2antl.1
|- ( ( ph /\ ch ) -> th )
Assertion 3ad2antl1
|- ( ( ( ph /\ ps /\ ta ) /\ ch ) -> th )

Proof

Step Hyp Ref Expression
1 3ad2antl.1
 |-  ( ( ph /\ ch ) -> th )
2 1 adantlr
 |-  ( ( ( ph /\ ta ) /\ ch ) -> th )
3 2 3adantl2
 |-  ( ( ( ph /\ ps /\ ta ) /\ ch ) -> th )