Metamath Proof Explorer


Theorem 3ad2antr1

Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 25-Dec-2007)

Ref Expression
Hypothesis 3ad2antl.1
|- ( ( ph /\ ch ) -> th )
Assertion 3ad2antr1
|- ( ( ph /\ ( ch /\ ps /\ ta ) ) -> th )

Proof

Step Hyp Ref Expression
1 3ad2antl.1
 |-  ( ( ph /\ ch ) -> th )
2 1 adantrr
 |-  ( ( ph /\ ( ch /\ ps ) ) -> th )
3 2 3adantr3
 |-  ( ( ph /\ ( ch /\ ps /\ ta ) ) -> th )