Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 25-Dec-2007)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3ad2antl.1 | |- ( ( ph /\ ch ) -> th ) |
|
Assertion | 3ad2antr1 | |- ( ( ph /\ ( ch /\ ps /\ ta ) ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | |- ( ( ph /\ ch ) -> th ) |
|
2 | 1 | adantrr | |- ( ( ph /\ ( ch /\ ps ) ) -> th ) |
3 | 2 | 3adantr3 | |- ( ( ph /\ ( ch /\ ps /\ ta ) ) -> th ) |