Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 27-Dec-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3ad2antl.1 | |- ( ( ph /\ ch ) -> th ) |
|
| Assertion | 3ad2antr2 | |- ( ( ph /\ ( ps /\ ch /\ ta ) ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | |- ( ( ph /\ ch ) -> th ) |
|
| 2 | 1 | adantrl | |- ( ( ph /\ ( ps /\ ch ) ) -> th ) |
| 3 | 2 | 3adantr3 | |- ( ( ph /\ ( ps /\ ch /\ ta ) ) -> th ) |