Metamath Proof Explorer


Theorem 3adant2l

Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006) (Proof shortened by Wolf Lammen, 25-Jun-2022)

Ref Expression
Hypothesis ad4ant3.1
|- ( ( ph /\ ps /\ ch ) -> th )
Assertion 3adant2l
|- ( ( ph /\ ( ta /\ ps ) /\ ch ) -> th )

Proof

Step Hyp Ref Expression
1 ad4ant3.1
 |-  ( ( ph /\ ps /\ ch ) -> th )
2 simpr
 |-  ( ( ta /\ ps ) -> ps )
3 2 1 syl3an2
 |-  ( ( ph /\ ( ta /\ ps ) /\ ch ) -> th )