Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006) (Proof shortened by Wolf Lammen, 25-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ad4ant3.1 | |- ( ( ph /\ ps /\ ch ) -> th ) |
|
| Assertion | 3adant3l | |- ( ( ph /\ ps /\ ( ta /\ ch ) ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant3.1 | |- ( ( ph /\ ps /\ ch ) -> th ) |
|
| 2 | simpr | |- ( ( ta /\ ch ) -> ch ) |
|
| 3 | 2 1 | syl3an3 | |- ( ( ph /\ ps /\ ( ta /\ ch ) ) -> th ) |