Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 17-Feb-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ad4ant3.1 | |- ( ( ph /\ ps /\ ch ) -> th ) |
|
| Assertion | 3adant3r2 | |- ( ( ph /\ ( ps /\ ta /\ ch ) ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant3.1 | |- ( ( ph /\ ps /\ ch ) -> th ) |
|
| 2 | 1 | 3expb | |- ( ( ph /\ ( ps /\ ch ) ) -> th ) |
| 3 | 2 | 3adantr2 | |- ( ( ph /\ ( ps /\ ta /\ ch ) ) -> th ) |