Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 17-Feb-2008)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ad4ant3.1 | |- ( ( ph /\ ps /\ ch ) -> th ) |
|
Assertion | 3adant3r2 | |- ( ( ph /\ ( ps /\ ta /\ ch ) ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant3.1 | |- ( ( ph /\ ps /\ ch ) -> th ) |
|
2 | 1 | 3expb | |- ( ( ph /\ ( ps /\ ch ) ) -> th ) |
3 | 2 | 3adantr2 | |- ( ( ph /\ ( ps /\ ta /\ ch ) ) -> th ) |