Metamath Proof Explorer


Theorem 3adant3r3

Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008)

Ref Expression
Hypothesis ad4ant3.1
|- ( ( ph /\ ps /\ ch ) -> th )
Assertion 3adant3r3
|- ( ( ph /\ ( ps /\ ch /\ ta ) ) -> th )

Proof

Step Hyp Ref Expression
1 ad4ant3.1
 |-  ( ( ph /\ ps /\ ch ) -> th )
2 1 3expb
 |-  ( ( ph /\ ( ps /\ ch ) ) -> th )
3 2 3adantr3
 |-  ( ( ph /\ ( ps /\ ch /\ ta ) ) -> th )