Metamath Proof Explorer


Theorem 3adantl2

Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005)

Ref Expression
Hypothesis 3adantl.1
|- ( ( ( ph /\ ps ) /\ ch ) -> th )
Assertion 3adantl2
|- ( ( ( ph /\ ta /\ ps ) /\ ch ) -> th )

Proof

Step Hyp Ref Expression
1 3adantl.1
 |-  ( ( ( ph /\ ps ) /\ ch ) -> th )
2 3simpb
 |-  ( ( ph /\ ta /\ ps ) -> ( ph /\ ps ) )
3 2 1 sylan
 |-  ( ( ( ph /\ ta /\ ps ) /\ ch ) -> th )