Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3adantl.1 | |- ( ( ( ph /\ ps ) /\ ch ) -> th ) |
|
| Assertion | 3adantl2 | |- ( ( ( ph /\ ta /\ ps ) /\ ch ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3adantl.1 | |- ( ( ( ph /\ ps ) /\ ch ) -> th ) |
|
| 2 | 3simpb | |- ( ( ph /\ ta /\ ps ) -> ( ph /\ ps ) ) |
|
| 3 | 2 1 | sylan | |- ( ( ( ph /\ ta /\ ps ) /\ ch ) -> th ) |