Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3adantl.1 | |- ( ( ( ph /\ ps ) /\ ch ) -> th ) |
|
Assertion | 3adantl3 | |- ( ( ( ph /\ ps /\ ta ) /\ ch ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3adantl.1 | |- ( ( ( ph /\ ps ) /\ ch ) -> th ) |
|
2 | 3simpa | |- ( ( ph /\ ps /\ ta ) -> ( ph /\ ps ) ) |
|
3 | 2 1 | sylan | |- ( ( ( ph /\ ps /\ ta ) /\ ch ) -> th ) |