Metamath Proof Explorer


Theorem 3adantll2

Description: Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis 3adantll2.1
|- ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ta )
Assertion 3adantll2
|- ( ( ( ( ph /\ et /\ ps ) /\ ch ) /\ th ) -> ta )

Proof

Step Hyp Ref Expression
1 3adantll2.1
 |-  ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ta )
2 simpll1
 |-  ( ( ( ( ph /\ et /\ ps ) /\ ch ) /\ th ) -> ph )
3 simpll3
 |-  ( ( ( ( ph /\ et /\ ps ) /\ ch ) /\ th ) -> ps )
4 2 3 jca
 |-  ( ( ( ( ph /\ et /\ ps ) /\ ch ) /\ th ) -> ( ph /\ ps ) )
5 simplr
 |-  ( ( ( ( ph /\ et /\ ps ) /\ ch ) /\ th ) -> ch )
6 simpr
 |-  ( ( ( ( ph /\ et /\ ps ) /\ ch ) /\ th ) -> th )
7 4 5 6 1 syl21anc
 |-  ( ( ( ( ph /\ et /\ ps ) /\ ch ) /\ th ) -> ta )