Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3adantr.1 | |- ( ( ph /\ ( ps /\ ch ) ) -> th ) |
|
Assertion | 3adantr1 | |- ( ( ph /\ ( ta /\ ps /\ ch ) ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3adantr.1 | |- ( ( ph /\ ( ps /\ ch ) ) -> th ) |
|
2 | 3simpc | |- ( ( ta /\ ps /\ ch ) -> ( ps /\ ch ) ) |
|
3 | 2 1 | sylan2 | |- ( ( ph /\ ( ta /\ ps /\ ch ) ) -> th ) |