Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3adantr.1 | |- ( ( ph /\ ( ps /\ ch ) ) -> th ) |
|
| Assertion | 3adantr2 | |- ( ( ph /\ ( ps /\ ta /\ ch ) ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3adantr.1 | |- ( ( ph /\ ( ps /\ ch ) ) -> th ) |
|
| 2 | 3simpb | |- ( ( ps /\ ta /\ ch ) -> ( ps /\ ch ) ) |
|
| 3 | 2 1 | sylan2 | |- ( ( ph /\ ( ps /\ ta /\ ch ) ) -> th ) |