Metamath Proof Explorer


Theorem 3adantr2

Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005)

Ref Expression
Hypothesis 3adantr.1
|- ( ( ph /\ ( ps /\ ch ) ) -> th )
Assertion 3adantr2
|- ( ( ph /\ ( ps /\ ta /\ ch ) ) -> th )

Proof

Step Hyp Ref Expression
1 3adantr.1
 |-  ( ( ph /\ ( ps /\ ch ) ) -> th )
2 3simpb
 |-  ( ( ps /\ ta /\ ch ) -> ( ps /\ ch ) )
3 2 1 sylan2
 |-  ( ( ph /\ ( ps /\ ta /\ ch ) ) -> th )