Description: Inference adding three universal quantifiers to both sides of an equivalence. (Contributed by Peter Mazsa, 10-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | albii.1 | |- ( ph <-> ps ) |
|
| Assertion | 3albii | |- ( A. x A. y A. z ph <-> A. x A. y A. z ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albii.1 | |- ( ph <-> ps ) |
|
| 2 | 1 | 2albii | |- ( A. y A. z ph <-> A. y A. z ps ) |
| 3 | 2 | albii | |- ( A. x A. y A. z ph <-> A. x A. y A. z ps ) |