Description: Swap conjuncts. (Contributed by NM, 16-Dec-2007) (Proof shortened by Wolf Lammen, 14-Apr-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3an1rs.1 | |- ( ( ( ph /\ ps /\ ch ) /\ th ) -> ta ) |
|
Assertion | 3an1rs | |- ( ( ( ph /\ ps /\ th ) /\ ch ) -> ta ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3an1rs.1 | |- ( ( ( ph /\ ps /\ ch ) /\ th ) -> ta ) |
|
2 | 1 | 3exp1 | |- ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) ) |
3 | 2 | com34 | |- ( ph -> ( ps -> ( th -> ( ch -> ta ) ) ) ) |
4 | 3 | 3imp1 | |- ( ( ( ph /\ ps /\ th ) /\ ch ) -> ta ) |