Metamath Proof Explorer


Theorem 3an4anass

Description: Associative law for four conjunctions with a triple conjunction. (Contributed by Alexander van der Vekens, 24-Jun-2018)

Ref Expression
Assertion 3an4anass
|- ( ( ( ph /\ ps /\ ch ) /\ th ) <-> ( ( ph /\ ps ) /\ ( ch /\ th ) ) )

Proof

Step Hyp Ref Expression
1 df-3an
 |-  ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) )
2 1 anbi1i
 |-  ( ( ( ph /\ ps /\ ch ) /\ th ) <-> ( ( ( ph /\ ps ) /\ ch ) /\ th ) )
3 anass
 |-  ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) <-> ( ( ph /\ ps ) /\ ( ch /\ th ) ) )
4 2 3 bitri
 |-  ( ( ( ph /\ ps /\ ch ) /\ th ) <-> ( ( ph /\ ps ) /\ ( ch /\ th ) ) )