Metamath Proof Explorer


Theorem 3an6

Description: Analogue of an4 for triple conjunction. (Contributed by Scott Fenton, 16-Mar-2011) (Proof shortened by Andrew Salmon, 25-May-2011)

Ref Expression
Assertion 3an6
|- ( ( ( ph /\ ps ) /\ ( ch /\ th ) /\ ( ta /\ et ) ) <-> ( ( ph /\ ch /\ ta ) /\ ( ps /\ th /\ et ) ) )

Proof

Step Hyp Ref Expression
1 an6
 |-  ( ( ( ph /\ ch /\ ta ) /\ ( ps /\ th /\ et ) ) <-> ( ( ph /\ ps ) /\ ( ch /\ th ) /\ ( ta /\ et ) ) )
2 1 bicomi
 |-  ( ( ( ph /\ ps ) /\ ( ch /\ th ) /\ ( ta /\ et ) ) <-> ( ( ph /\ ch /\ ta ) /\ ( ps /\ th /\ et ) ) )