Description: Analogue of an4 for triple conjunction. (Contributed by Scott Fenton, 16-Mar-2011) (Proof shortened by Andrew Salmon, 25-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3an6 | |- ( ( ( ph /\ ps ) /\ ( ch /\ th ) /\ ( ta /\ et ) ) <-> ( ( ph /\ ch /\ ta ) /\ ( ps /\ th /\ et ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an6 | |- ( ( ( ph /\ ch /\ ta ) /\ ( ps /\ th /\ et ) ) <-> ( ( ph /\ ps ) /\ ( ch /\ th ) /\ ( ta /\ et ) ) ) |
|
| 2 | 1 | bicomi | |- ( ( ( ph /\ ps ) /\ ( ch /\ th ) /\ ( ta /\ et ) ) <-> ( ( ph /\ ch /\ ta ) /\ ( ps /\ th /\ et ) ) ) |