Metamath Proof Explorer


Theorem 3anan12

Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Andrew Salmon, 14-Jun-2011) (Revised to shorten 3ancoma by Wolf Lammen, 5-Jun-2022.)

Ref Expression
Assertion 3anan12
|- ( ( ph /\ ps /\ ch ) <-> ( ps /\ ( ph /\ ch ) ) )

Proof

Step Hyp Ref Expression
1 3anass
 |-  ( ( ph /\ ps /\ ch ) <-> ( ph /\ ( ps /\ ch ) ) )
2 an12
 |-  ( ( ph /\ ( ps /\ ch ) ) <-> ( ps /\ ( ph /\ ch ) ) )
3 1 2 bitri
 |-  ( ( ph /\ ps /\ ch ) <-> ( ps /\ ( ph /\ ch ) ) )