Description: Inference that undistributes a triple conjunction in the antecedent. (Contributed by NM, 18-Apr-2007)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3anandis.1 | |- ( ( ( ph /\ ps ) /\ ( ph /\ ch ) /\ ( ph /\ th ) ) -> ta ) |
|
Assertion | 3anandis | |- ( ( ph /\ ( ps /\ ch /\ th ) ) -> ta ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anandis.1 | |- ( ( ( ph /\ ps ) /\ ( ph /\ ch ) /\ ( ph /\ th ) ) -> ta ) |
|
2 | simpl | |- ( ( ph /\ ( ps /\ ch /\ th ) ) -> ph ) |
|
3 | simpr1 | |- ( ( ph /\ ( ps /\ ch /\ th ) ) -> ps ) |
|
4 | simpr2 | |- ( ( ph /\ ( ps /\ ch /\ th ) ) -> ch ) |
|
5 | simpr3 | |- ( ( ph /\ ( ps /\ ch /\ th ) ) -> th ) |
|
6 | 2 3 2 4 2 5 1 | syl222anc | |- ( ( ph /\ ( ps /\ ch /\ th ) ) -> ta ) |