Metamath Proof Explorer


Theorem 3anassrs

Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypothesis 3anassrs.1
|- ( ( ph /\ ( ps /\ ch /\ th ) ) -> ta )
Assertion 3anassrs
|- ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ta )

Proof

Step Hyp Ref Expression
1 3anassrs.1
 |-  ( ( ph /\ ( ps /\ ch /\ th ) ) -> ta )
2 1 3exp2
 |-  ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) )
3 2 imp41
 |-  ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ta )