Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3anassrs.1 | |- ( ( ph /\ ( ps /\ ch /\ th ) ) -> ta ) |
|
Assertion | 3anassrs | |- ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ta ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anassrs.1 | |- ( ( ph /\ ( ps /\ ch /\ th ) ) -> ta ) |
|
2 | 1 | 3exp2 | |- ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) ) |
3 | 2 | imp41 | |- ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ta ) |