Metamath Proof Explorer


Theorem 3anbi123i

Description: Join 3 biconditionals with conjunction. (Contributed by NM, 21-Apr-1994)

Ref Expression
Hypotheses bi3.1
|- ( ph <-> ps )
bi3.2
|- ( ch <-> th )
bi3.3
|- ( ta <-> et )
Assertion 3anbi123i
|- ( ( ph /\ ch /\ ta ) <-> ( ps /\ th /\ et ) )

Proof

Step Hyp Ref Expression
1 bi3.1
 |-  ( ph <-> ps )
2 bi3.2
 |-  ( ch <-> th )
3 bi3.3
 |-  ( ta <-> et )
4 1 2 anbi12i
 |-  ( ( ph /\ ch ) <-> ( ps /\ th ) )
5 4 3 anbi12i
 |-  ( ( ( ph /\ ch ) /\ ta ) <-> ( ( ps /\ th ) /\ et ) )
6 df-3an
 |-  ( ( ph /\ ch /\ ta ) <-> ( ( ph /\ ch ) /\ ta ) )
7 df-3an
 |-  ( ( ps /\ th /\ et ) <-> ( ( ps /\ th ) /\ et ) )
8 5 6 7 3bitr4i
 |-  ( ( ph /\ ch /\ ta ) <-> ( ps /\ th /\ et ) )