Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3anbi12d.1 | |- ( ph -> ( ps <-> ch ) ) | |
| 3anbi12d.2 | |- ( ph -> ( th <-> ta ) ) | ||
| Assertion | 3anbi12d | |- ( ph -> ( ( ps /\ th /\ et ) <-> ( ch /\ ta /\ et ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3anbi12d.1 | |- ( ph -> ( ps <-> ch ) ) | |
| 2 | 3anbi12d.2 | |- ( ph -> ( th <-> ta ) ) | |
| 3 | biidd | |- ( ph -> ( et <-> et ) ) | |
| 4 | 1 2 3 | 3anbi123d | |- ( ph -> ( ( ps /\ th /\ et ) <-> ( ch /\ ta /\ et ) ) ) |