Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3anbi1d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| Assertion | 3anbi1d | |- ( ph -> ( ( ps /\ th /\ ta ) <-> ( ch /\ th /\ ta ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi1d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| 2 | biidd | |- ( ph -> ( th <-> th ) ) |
|
| 3 | 1 2 | 3anbi12d | |- ( ph -> ( ( ps /\ th /\ ta ) <-> ( ch /\ th /\ ta ) ) ) |