Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 3anbi12d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
3anbi12d.2 | |- ( ph -> ( th <-> ta ) ) |
||
Assertion | 3anbi23d | |- ( ph -> ( ( et /\ ps /\ th ) <-> ( et /\ ch /\ ta ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anbi12d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
2 | 3anbi12d.2 | |- ( ph -> ( th <-> ta ) ) |
|
3 | biidd | |- ( ph -> ( et <-> et ) ) |
|
4 | 3 1 2 | 3anbi123d | |- ( ph -> ( ( et /\ ps /\ th ) <-> ( et /\ ch /\ ta ) ) ) |