Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3anbi1d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| Assertion | 3anbi3d | |- ( ph -> ( ( th /\ ta /\ ps ) <-> ( th /\ ta /\ ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi1d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| 2 | biidd | |- ( ph -> ( th <-> th ) ) |
|
| 3 | 2 1 | 3anbi13d | |- ( ph -> ( ( th /\ ta /\ ps ) <-> ( th /\ ta /\ ch ) ) ) |