Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3anbi1i.1 | |- ( ph <-> ps ) |
|
| Assertion | 3anbi3i | |- ( ( ch /\ th /\ ph ) <-> ( ch /\ th /\ ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi1i.1 | |- ( ph <-> ps ) |
|
| 2 | biid | |- ( ch <-> ch ) |
|
| 3 | biid | |- ( th <-> th ) |
|
| 4 | 2 3 1 | 3anbi123i | |- ( ( ch /\ th /\ ph ) <-> ( ch /\ th /\ ps ) ) |