Description: Remove a hypothesis from the second member of a biconditional. (Contributed by FL, 22-Jul-2008)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3anibar.1 | |- ( ( ph /\ ps /\ ch ) -> ( th <-> ( ch /\ ta ) ) ) |
|
Assertion | 3anibar | |- ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anibar.1 | |- ( ( ph /\ ps /\ ch ) -> ( th <-> ( ch /\ ta ) ) ) |
|
2 | simp3 | |- ( ( ph /\ ps /\ ch ) -> ch ) |
|
3 | 2 1 | mpbirand | |- ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) |