Metamath Proof Explorer


Theorem 3anibar

Description: Remove a hypothesis from the second member of a biconditional. (Contributed by FL, 22-Jul-2008)

Ref Expression
Hypothesis 3anibar.1
|- ( ( ph /\ ps /\ ch ) -> ( th <-> ( ch /\ ta ) ) )
Assertion 3anibar
|- ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) )

Proof

Step Hyp Ref Expression
1 3anibar.1
 |-  ( ( ph /\ ps /\ ch ) -> ( th <-> ( ch /\ ta ) ) )
2 simp3
 |-  ( ( ph /\ ps /\ ch ) -> ch )
3 2 1 mpbirand
 |-  ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) )