Description: Idempotent law for conjunction. (Contributed by Peter Mazsa, 17-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | 3anidm | |- ( ( ph /\ ph /\ ph ) <-> ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an | |- ( ( ph /\ ph /\ ph ) <-> ( ( ph /\ ph ) /\ ph ) ) |
|
2 | anabs1 | |- ( ( ( ph /\ ph ) /\ ph ) <-> ( ph /\ ph ) ) |
|
3 | anidm | |- ( ( ph /\ ph ) <-> ph ) |
|
4 | 1 2 3 | 3bitri | |- ( ( ph /\ ph /\ ph ) <-> ph ) |