Description: Idempotent law for conjunction. (Contributed by Peter Mazsa, 17-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3anidm | |- ( ( ph /\ ph /\ ph ) <-> ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an | |- ( ( ph /\ ph /\ ph ) <-> ( ( ph /\ ph ) /\ ph ) ) |
|
| 2 | anabs1 | |- ( ( ( ph /\ ph ) /\ ph ) <-> ( ph /\ ph ) ) |
|
| 3 | anidm | |- ( ( ph /\ ph ) <-> ph ) |
|
| 4 | 1 2 3 | 3bitri | |- ( ( ph /\ ph /\ ph ) <-> ph ) |