Metamath Proof Explorer


Theorem 3anidm12

Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008)

Ref Expression
Hypothesis 3anidm12.1
|- ( ( ph /\ ph /\ ps ) -> ch )
Assertion 3anidm12
|- ( ( ph /\ ps ) -> ch )

Proof

Step Hyp Ref Expression
1 3anidm12.1
 |-  ( ( ph /\ ph /\ ps ) -> ch )
2 1 3expib
 |-  ( ph -> ( ( ph /\ ps ) -> ch ) )
3 2 anabsi5
 |-  ( ( ph /\ ps ) -> ch )