Metamath Proof Explorer


Theorem 3anidm13

Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008)

Ref Expression
Hypothesis 3anidm13.1
|- ( ( ph /\ ps /\ ph ) -> ch )
Assertion 3anidm13
|- ( ( ph /\ ps ) -> ch )

Proof

Step Hyp Ref Expression
1 3anidm13.1
 |-  ( ( ph /\ ps /\ ph ) -> ch )
2 1 3com23
 |-  ( ( ph /\ ph /\ ps ) -> ch )
3 2 3anidm12
 |-  ( ( ph /\ ps ) -> ch )