Metamath Proof Explorer


Theorem 3anidm23

Description: Inference from idempotent law for conjunction. (Contributed by NM, 1-Feb-2007)

Ref Expression
Hypothesis 3anidm23.1
|- ( ( ph /\ ps /\ ps ) -> ch )
Assertion 3anidm23
|- ( ( ph /\ ps ) -> ch )

Proof

Step Hyp Ref Expression
1 3anidm23.1
 |-  ( ( ph /\ ps /\ ps ) -> ch )
2 1 3expa
 |-  ( ( ( ph /\ ps ) /\ ps ) -> ch )
3 2 anabss3
 |-  ( ( ph /\ ps ) -> ch )