Metamath Proof Explorer


Theorem 3anim123i

Description: Join antecedents and consequents with conjunction. (Contributed by NM, 8-Apr-1994)

Ref Expression
Hypotheses 3anim123i.1
|- ( ph -> ps )
3anim123i.2
|- ( ch -> th )
3anim123i.3
|- ( ta -> et )
Assertion 3anim123i
|- ( ( ph /\ ch /\ ta ) -> ( ps /\ th /\ et ) )

Proof

Step Hyp Ref Expression
1 3anim123i.1
 |-  ( ph -> ps )
2 3anim123i.2
 |-  ( ch -> th )
3 3anim123i.3
 |-  ( ta -> et )
4 1 3ad2ant1
 |-  ( ( ph /\ ch /\ ta ) -> ps )
5 2 3ad2ant2
 |-  ( ( ph /\ ch /\ ta ) -> th )
6 3 3ad2ant3
 |-  ( ( ph /\ ch /\ ta ) -> et )
7 4 5 6 3jca
 |-  ( ( ph /\ ch /\ ta ) -> ( ps /\ th /\ et ) )