Metamath Proof Explorer


Theorem 3anim2i

Description: Add two conjuncts to antecedent and consequent. (Contributed by AV, 21-Nov-2019)

Ref Expression
Hypothesis 3animi.1
|- ( ph -> ps )
Assertion 3anim2i
|- ( ( ch /\ ph /\ th ) -> ( ch /\ ps /\ th ) )

Proof

Step Hyp Ref Expression
1 3animi.1
 |-  ( ph -> ps )
2 id
 |-  ( ch -> ch )
3 id
 |-  ( th -> th )
4 2 1 3 3anim123i
 |-  ( ( ch /\ ph /\ th ) -> ( ch /\ ps /\ th ) )