Metamath Proof Explorer


Theorem 3anor

Description: Triple conjunction expressed in terms of triple disjunction. (Contributed by Jeff Hankins, 15-Aug-2009) (Proof shortened by Wolf Lammen, 8-Apr-2022)

Ref Expression
Assertion 3anor
|- ( ( ph /\ ps /\ ch ) <-> -. ( -. ph \/ -. ps \/ -. ch ) )

Proof

Step Hyp Ref Expression
1 3ianor
 |-  ( -. ( ph /\ ps /\ ch ) <-> ( -. ph \/ -. ps \/ -. ch ) )
2 1 con1bii
 |-  ( -. ( -. ph \/ -. ps \/ -. ch ) <-> ( ph /\ ps /\ ch ) )
3 2 bicomi
 |-  ( ( ph /\ ps /\ ch ) <-> -. ( -. ph \/ -. ps \/ -. ch ) )