| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3at.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | 3at.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | 3at.a |  |-  A = ( Atoms ` K ) | 
						
							| 4 | 1 2 3 | 3atlem7 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) ) | 
						
							| 5 | 4 | 3expia |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q ) ) -> ( ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) -> ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) ) ) | 
						
							| 6 |  | hllat |  |-  ( K e. HL -> K e. Lat ) | 
						
							| 7 |  | simpl |  |-  ( ( K e. Lat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> K e. Lat ) | 
						
							| 8 |  | simpr1 |  |-  ( ( K e. Lat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> P e. A ) | 
						
							| 9 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 10 | 9 3 | atbase |  |-  ( P e. A -> P e. ( Base ` K ) ) | 
						
							| 11 | 8 10 | syl |  |-  ( ( K e. Lat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> P e. ( Base ` K ) ) | 
						
							| 12 |  | simpr2 |  |-  ( ( K e. Lat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> Q e. A ) | 
						
							| 13 | 9 3 | atbase |  |-  ( Q e. A -> Q e. ( Base ` K ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( K e. Lat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> Q e. ( Base ` K ) ) | 
						
							| 15 | 9 2 | latjcl |  |-  ( ( K e. Lat /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) | 
						
							| 16 | 7 11 14 15 | syl3anc |  |-  ( ( K e. Lat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) | 
						
							| 17 |  | simpr3 |  |-  ( ( K e. Lat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> R e. A ) | 
						
							| 18 | 9 3 | atbase |  |-  ( R e. A -> R e. ( Base ` K ) ) | 
						
							| 19 | 17 18 | syl |  |-  ( ( K e. Lat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> R e. ( Base ` K ) ) | 
						
							| 20 | 9 2 | latjcl |  |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( ( P .\/ Q ) .\/ R ) e. ( Base ` K ) ) | 
						
							| 21 | 7 16 19 20 | syl3anc |  |-  ( ( K e. Lat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( P .\/ Q ) .\/ R ) e. ( Base ` K ) ) | 
						
							| 22 | 9 1 | latref |  |-  ( ( K e. Lat /\ ( ( P .\/ Q ) .\/ R ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) .\/ R ) .<_ ( ( P .\/ Q ) .\/ R ) ) | 
						
							| 23 | 21 22 | syldan |  |-  ( ( K e. Lat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( P .\/ Q ) .\/ R ) .<_ ( ( P .\/ Q ) .\/ R ) ) | 
						
							| 24 |  | breq2 |  |-  ( ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) -> ( ( ( P .\/ Q ) .\/ R ) .<_ ( ( P .\/ Q ) .\/ R ) <-> ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) ) | 
						
							| 25 | 23 24 | syl5ibcom |  |-  ( ( K e. Lat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) -> ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) ) | 
						
							| 26 | 6 25 | sylan |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) -> ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) ) | 
						
							| 27 | 26 | 3adant3 |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) -> ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q ) ) -> ( ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) -> ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) ) | 
						
							| 29 | 5 28 | impbid |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q ) ) -> ( ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) <-> ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) ) ) |