Step |
Hyp |
Ref |
Expression |
1 |
|
3at.l |
|- .<_ = ( le ` K ) |
2 |
|
3at.j |
|- .\/ = ( join ` K ) |
3 |
|
3at.a |
|- A = ( Atoms ` K ) |
4 |
1 2 3
|
3atlem7 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) ) |
5 |
4
|
3expia |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q ) ) -> ( ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) -> ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) ) ) |
6 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
7 |
|
simpl |
|- ( ( K e. Lat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> K e. Lat ) |
8 |
|
simpr1 |
|- ( ( K e. Lat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> P e. A ) |
9 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
10 |
9 3
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
11 |
8 10
|
syl |
|- ( ( K e. Lat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> P e. ( Base ` K ) ) |
12 |
|
simpr2 |
|- ( ( K e. Lat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> Q e. A ) |
13 |
9 3
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
14 |
12 13
|
syl |
|- ( ( K e. Lat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> Q e. ( Base ` K ) ) |
15 |
9 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
16 |
7 11 14 15
|
syl3anc |
|- ( ( K e. Lat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
17 |
|
simpr3 |
|- ( ( K e. Lat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> R e. A ) |
18 |
9 3
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
19 |
17 18
|
syl |
|- ( ( K e. Lat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> R e. ( Base ` K ) ) |
20 |
9 2
|
latjcl |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( ( P .\/ Q ) .\/ R ) e. ( Base ` K ) ) |
21 |
7 16 19 20
|
syl3anc |
|- ( ( K e. Lat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( P .\/ Q ) .\/ R ) e. ( Base ` K ) ) |
22 |
9 1
|
latref |
|- ( ( K e. Lat /\ ( ( P .\/ Q ) .\/ R ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) .\/ R ) .<_ ( ( P .\/ Q ) .\/ R ) ) |
23 |
21 22
|
syldan |
|- ( ( K e. Lat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( P .\/ Q ) .\/ R ) .<_ ( ( P .\/ Q ) .\/ R ) ) |
24 |
|
breq2 |
|- ( ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) -> ( ( ( P .\/ Q ) .\/ R ) .<_ ( ( P .\/ Q ) .\/ R ) <-> ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) ) |
25 |
23 24
|
syl5ibcom |
|- ( ( K e. Lat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) -> ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) ) |
26 |
6 25
|
sylan |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) -> ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) ) |
27 |
26
|
3adant3 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) -> ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) ) |
28 |
27
|
adantr |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q ) ) -> ( ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) -> ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) ) |
29 |
5 28
|
impbid |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q ) ) -> ( ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) <-> ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) ) ) |