| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3at.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | 3at.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | 3at.a |  |-  A = ( Atoms ` K ) | 
						
							| 4 |  | oveq2 |  |-  ( U = P -> ( ( S .\/ T ) .\/ U ) = ( ( S .\/ T ) .\/ P ) ) | 
						
							| 5 | 4 | eqcoms |  |-  ( P = U -> ( ( S .\/ T ) .\/ U ) = ( ( S .\/ T ) .\/ P ) ) | 
						
							| 6 | 5 | breq2d |  |-  ( P = U -> ( ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) <-> ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ P ) ) ) | 
						
							| 7 | 5 | eqeq2d |  |-  ( P = U -> ( ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) <-> ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ P ) ) ) | 
						
							| 8 | 6 7 | imbi12d |  |-  ( P = U -> ( ( ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) -> ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) ) <-> ( ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ P ) -> ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ P ) ) ) ) | 
						
							| 9 |  | simp1l |  |-  ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) /\ P =/= U /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) ) | 
						
							| 10 |  | simp1r1 |  |-  ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) /\ P =/= U /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> -. R .<_ ( P .\/ Q ) ) | 
						
							| 11 |  | simp2 |  |-  ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) /\ P =/= U /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> P =/= U ) | 
						
							| 12 |  | simp1r3 |  |-  ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) /\ P =/= U /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> -. Q .<_ ( P .\/ U ) ) | 
						
							| 13 |  | simp3 |  |-  ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) /\ P =/= U /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) | 
						
							| 14 | 1 2 3 | 3atlem3 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= U /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) ) | 
						
							| 15 | 9 10 11 12 13 14 | syl131anc |  |-  ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) /\ P =/= U /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) ) | 
						
							| 16 | 15 | 3expia |  |-  ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) /\ P =/= U ) -> ( ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) -> ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) ) ) | 
						
							| 17 |  | simp11 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> K e. HL ) | 
						
							| 18 |  | simp123 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> R e. A ) | 
						
							| 19 |  | simp122 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> Q e. A ) | 
						
							| 20 |  | simp121 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> P e. A ) | 
						
							| 21 | 18 19 20 | 3jca |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> ( R e. A /\ Q e. A /\ P e. A ) ) | 
						
							| 22 |  | simp131 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> S e. A ) | 
						
							| 23 |  | simp132 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> T e. A ) | 
						
							| 24 | 22 23 | jca |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> ( S e. A /\ T e. A ) ) | 
						
							| 25 |  | simp21 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> -. R .<_ ( P .\/ Q ) ) | 
						
							| 26 |  | simp22 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> P =/= Q ) | 
						
							| 27 | 1 2 3 | hlatexch2 |  |-  ( ( K e. HL /\ ( P e. A /\ R e. A /\ Q e. A ) /\ P =/= Q ) -> ( P .<_ ( R .\/ Q ) -> R .<_ ( P .\/ Q ) ) ) | 
						
							| 28 | 17 20 18 19 26 27 | syl131anc |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> ( P .<_ ( R .\/ Q ) -> R .<_ ( P .\/ Q ) ) ) | 
						
							| 29 | 25 28 | mtod |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> -. P .<_ ( R .\/ Q ) ) | 
						
							| 30 | 17 | hllatd |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> K e. Lat ) | 
						
							| 31 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 32 | 31 3 | atbase |  |-  ( R e. A -> R e. ( Base ` K ) ) | 
						
							| 33 | 18 32 | syl |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> R e. ( Base ` K ) ) | 
						
							| 34 | 31 3 | atbase |  |-  ( P e. A -> P e. ( Base ` K ) ) | 
						
							| 35 | 20 34 | syl |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> P e. ( Base ` K ) ) | 
						
							| 36 | 31 3 | atbase |  |-  ( Q e. A -> Q e. ( Base ` K ) ) | 
						
							| 37 | 19 36 | syl |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> Q e. ( Base ` K ) ) | 
						
							| 38 | 31 1 2 | latnlej1r |  |-  ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) /\ -. R .<_ ( P .\/ Q ) ) -> R =/= Q ) | 
						
							| 39 | 30 33 35 37 25 38 | syl131anc |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> R =/= Q ) | 
						
							| 40 |  | simp3 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) | 
						
							| 41 | 1 2 3 | 3atlem4 |  |-  ( ( ( K e. HL /\ ( R e. A /\ Q e. A /\ P e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( -. P .<_ ( R .\/ Q ) /\ R =/= Q ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> ( ( R .\/ Q ) .\/ P ) = ( ( S .\/ T ) .\/ P ) ) | 
						
							| 42 | 17 21 24 29 39 40 41 | syl321anc |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> ( ( R .\/ Q ) .\/ P ) = ( ( S .\/ T ) .\/ P ) ) | 
						
							| 43 | 42 | 3expia |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> ( ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) -> ( ( R .\/ Q ) .\/ P ) = ( ( S .\/ T ) .\/ P ) ) ) | 
						
							| 44 |  | simpl1 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> K e. HL ) | 
						
							| 45 | 44 | hllatd |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> K e. Lat ) | 
						
							| 46 |  | simpl21 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> P e. A ) | 
						
							| 47 | 46 34 | syl |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> P e. ( Base ` K ) ) | 
						
							| 48 |  | simpl22 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> Q e. A ) | 
						
							| 49 | 48 36 | syl |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> Q e. ( Base ` K ) ) | 
						
							| 50 |  | simpl23 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> R e. A ) | 
						
							| 51 | 50 32 | syl |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> R e. ( Base ` K ) ) | 
						
							| 52 | 31 2 | latj31 |  |-  ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ Q e. ( Base ` K ) /\ R e. ( Base ` K ) ) ) -> ( ( P .\/ Q ) .\/ R ) = ( ( R .\/ Q ) .\/ P ) ) | 
						
							| 53 | 45 47 49 51 52 | syl13anc |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> ( ( P .\/ Q ) .\/ R ) = ( ( R .\/ Q ) .\/ P ) ) | 
						
							| 54 | 53 | breq1d |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> ( ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ P ) <-> ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) ) | 
						
							| 55 | 53 | eqeq1d |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> ( ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ P ) <-> ( ( R .\/ Q ) .\/ P ) = ( ( S .\/ T ) .\/ P ) ) ) | 
						
							| 56 | 43 54 55 | 3imtr4d |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> ( ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ P ) -> ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ P ) ) ) | 
						
							| 57 | 8 16 56 | pm2.61ne |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> ( ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) -> ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) ) ) | 
						
							| 58 | 57 | 3impia |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) ) |