Step |
Hyp |
Ref |
Expression |
1 |
|
3at.l |
|- .<_ = ( le ` K ) |
2 |
|
3at.j |
|- .\/ = ( join ` K ) |
3 |
|
3at.a |
|- A = ( Atoms ` K ) |
4 |
|
oveq2 |
|- ( U = P -> ( ( S .\/ T ) .\/ U ) = ( ( S .\/ T ) .\/ P ) ) |
5 |
4
|
eqcoms |
|- ( P = U -> ( ( S .\/ T ) .\/ U ) = ( ( S .\/ T ) .\/ P ) ) |
6 |
5
|
breq2d |
|- ( P = U -> ( ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) <-> ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ P ) ) ) |
7 |
5
|
eqeq2d |
|- ( P = U -> ( ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) <-> ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ P ) ) ) |
8 |
6 7
|
imbi12d |
|- ( P = U -> ( ( ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) -> ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) ) <-> ( ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ P ) -> ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ P ) ) ) ) |
9 |
|
simp1l |
|- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) /\ P =/= U /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) ) |
10 |
|
simp1r1 |
|- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) /\ P =/= U /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> -. R .<_ ( P .\/ Q ) ) |
11 |
|
simp2 |
|- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) /\ P =/= U /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> P =/= U ) |
12 |
|
simp1r3 |
|- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) /\ P =/= U /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> -. Q .<_ ( P .\/ U ) ) |
13 |
|
simp3 |
|- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) /\ P =/= U /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) |
14 |
1 2 3
|
3atlem3 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= U /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) ) |
15 |
9 10 11 12 13 14
|
syl131anc |
|- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) /\ P =/= U /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) ) |
16 |
15
|
3expia |
|- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) /\ P =/= U ) -> ( ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) -> ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) ) ) |
17 |
|
simp11 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> K e. HL ) |
18 |
|
simp123 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> R e. A ) |
19 |
|
simp122 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> Q e. A ) |
20 |
|
simp121 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> P e. A ) |
21 |
18 19 20
|
3jca |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> ( R e. A /\ Q e. A /\ P e. A ) ) |
22 |
|
simp131 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> S e. A ) |
23 |
|
simp132 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> T e. A ) |
24 |
22 23
|
jca |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> ( S e. A /\ T e. A ) ) |
25 |
|
simp21 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> -. R .<_ ( P .\/ Q ) ) |
26 |
|
simp22 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> P =/= Q ) |
27 |
1 2 3
|
hlatexch2 |
|- ( ( K e. HL /\ ( P e. A /\ R e. A /\ Q e. A ) /\ P =/= Q ) -> ( P .<_ ( R .\/ Q ) -> R .<_ ( P .\/ Q ) ) ) |
28 |
17 20 18 19 26 27
|
syl131anc |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> ( P .<_ ( R .\/ Q ) -> R .<_ ( P .\/ Q ) ) ) |
29 |
25 28
|
mtod |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> -. P .<_ ( R .\/ Q ) ) |
30 |
17
|
hllatd |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> K e. Lat ) |
31 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
32 |
31 3
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
33 |
18 32
|
syl |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> R e. ( Base ` K ) ) |
34 |
31 3
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
35 |
20 34
|
syl |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> P e. ( Base ` K ) ) |
36 |
31 3
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
37 |
19 36
|
syl |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> Q e. ( Base ` K ) ) |
38 |
31 1 2
|
latnlej1r |
|- ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) /\ -. R .<_ ( P .\/ Q ) ) -> R =/= Q ) |
39 |
30 33 35 37 25 38
|
syl131anc |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> R =/= Q ) |
40 |
|
simp3 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) |
41 |
1 2 3
|
3atlem4 |
|- ( ( ( K e. HL /\ ( R e. A /\ Q e. A /\ P e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( -. P .<_ ( R .\/ Q ) /\ R =/= Q ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> ( ( R .\/ Q ) .\/ P ) = ( ( S .\/ T ) .\/ P ) ) |
42 |
17 21 24 29 39 40 41
|
syl321anc |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) -> ( ( R .\/ Q ) .\/ P ) = ( ( S .\/ T ) .\/ P ) ) |
43 |
42
|
3expia |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> ( ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) -> ( ( R .\/ Q ) .\/ P ) = ( ( S .\/ T ) .\/ P ) ) ) |
44 |
|
simpl1 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> K e. HL ) |
45 |
44
|
hllatd |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> K e. Lat ) |
46 |
|
simpl21 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> P e. A ) |
47 |
46 34
|
syl |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> P e. ( Base ` K ) ) |
48 |
|
simpl22 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> Q e. A ) |
49 |
48 36
|
syl |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> Q e. ( Base ` K ) ) |
50 |
|
simpl23 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> R e. A ) |
51 |
50 32
|
syl |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> R e. ( Base ` K ) ) |
52 |
31 2
|
latj31 |
|- ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ Q e. ( Base ` K ) /\ R e. ( Base ` K ) ) ) -> ( ( P .\/ Q ) .\/ R ) = ( ( R .\/ Q ) .\/ P ) ) |
53 |
45 47 49 51 52
|
syl13anc |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> ( ( P .\/ Q ) .\/ R ) = ( ( R .\/ Q ) .\/ P ) ) |
54 |
53
|
breq1d |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> ( ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ P ) <-> ( ( R .\/ Q ) .\/ P ) .<_ ( ( S .\/ T ) .\/ P ) ) ) |
55 |
53
|
eqeq1d |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> ( ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ P ) <-> ( ( R .\/ Q ) .\/ P ) = ( ( S .\/ T ) .\/ P ) ) ) |
56 |
43 54 55
|
3imtr4d |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> ( ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ P ) -> ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ P ) ) ) |
57 |
8 16 56
|
pm2.61ne |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) ) -> ( ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) -> ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) ) ) |
58 |
57
|
3impia |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ -. Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) ) |