Step |
Hyp |
Ref |
Expression |
1 |
|
3at.l |
|- .<_ = ( le ` K ) |
2 |
|
3at.j |
|- .\/ = ( join ` K ) |
3 |
|
3at.a |
|- A = ( Atoms ` K ) |
4 |
|
simp11 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> K e. HL ) |
5 |
|
simp121 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> P e. A ) |
6 |
|
simp122 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> Q e. A ) |
7 |
|
simp123 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> R e. A ) |
8 |
2 3
|
hlatj32 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( P .\/ Q ) .\/ R ) = ( ( P .\/ R ) .\/ Q ) ) |
9 |
4 5 6 7 8
|
syl13anc |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( ( P .\/ Q ) .\/ R ) = ( ( P .\/ R ) .\/ Q ) ) |
10 |
5 7 6
|
3jca |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( P e. A /\ R e. A /\ Q e. A ) ) |
11 |
|
simp13 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( S e. A /\ T e. A /\ U e. A ) ) |
12 |
|
simp21 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> -. R .<_ ( P .\/ Q ) ) |
13 |
|
simp22 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> P =/= Q ) |
14 |
13
|
necomd |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> Q =/= P ) |
15 |
1 2 3
|
hlatexch1 |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ P e. A ) /\ Q =/= P ) -> ( Q .<_ ( P .\/ R ) -> R .<_ ( P .\/ Q ) ) ) |
16 |
4 6 7 5 14 15
|
syl131anc |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( Q .<_ ( P .\/ R ) -> R .<_ ( P .\/ Q ) ) ) |
17 |
12 16
|
mtod |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> -. Q .<_ ( P .\/ R ) ) |
18 |
4
|
hllatd |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> K e. Lat ) |
19 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
20 |
19 3
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
21 |
7 20
|
syl |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> R e. ( Base ` K ) ) |
22 |
19 3
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
23 |
5 22
|
syl |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> P e. ( Base ` K ) ) |
24 |
19 3
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
25 |
6 24
|
syl |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> Q e. ( Base ` K ) ) |
26 |
19 1 2
|
latnlej1l |
|- ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) /\ -. R .<_ ( P .\/ Q ) ) -> R =/= P ) |
27 |
26
|
necomd |
|- ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) /\ -. R .<_ ( P .\/ Q ) ) -> P =/= R ) |
28 |
18 21 23 25 12 27
|
syl131anc |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> P =/= R ) |
29 |
|
simp23 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> Q .<_ ( P .\/ U ) ) |
30 |
|
simp133 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> U e. A ) |
31 |
1 2 3
|
hlatexchb1 |
|- ( ( K e. HL /\ ( Q e. A /\ U e. A /\ P e. A ) /\ Q =/= P ) -> ( Q .<_ ( P .\/ U ) <-> ( P .\/ Q ) = ( P .\/ U ) ) ) |
32 |
4 6 30 5 14 31
|
syl131anc |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( Q .<_ ( P .\/ U ) <-> ( P .\/ Q ) = ( P .\/ U ) ) ) |
33 |
29 32
|
mpbid |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( P .\/ Q ) = ( P .\/ U ) ) |
34 |
33
|
breq2d |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( R .<_ ( P .\/ Q ) <-> R .<_ ( P .\/ U ) ) ) |
35 |
12 34
|
mtbid |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> -. R .<_ ( P .\/ U ) ) |
36 |
|
simp3 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) |
37 |
9 36
|
eqbrtrrd |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( ( P .\/ R ) .\/ Q ) .<_ ( ( S .\/ T ) .\/ U ) ) |
38 |
1 2 3
|
3atlem5 |
|- ( ( ( K e. HL /\ ( P e. A /\ R e. A /\ Q e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. Q .<_ ( P .\/ R ) /\ P =/= R /\ -. R .<_ ( P .\/ U ) ) /\ ( ( P .\/ R ) .\/ Q ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( ( P .\/ R ) .\/ Q ) = ( ( S .\/ T ) .\/ U ) ) |
39 |
4 10 11 17 28 35 37 38
|
syl331anc |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( ( P .\/ R ) .\/ Q ) = ( ( S .\/ T ) .\/ U ) ) |
40 |
9 39
|
eqtrd |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) ) |