| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3at.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | 3at.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | 3at.a |  |-  A = ( Atoms ` K ) | 
						
							| 4 |  | simp11 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> K e. HL ) | 
						
							| 5 |  | simp121 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> P e. A ) | 
						
							| 6 |  | simp122 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> Q e. A ) | 
						
							| 7 |  | simp123 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> R e. A ) | 
						
							| 8 | 2 3 | hlatj32 |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( P .\/ Q ) .\/ R ) = ( ( P .\/ R ) .\/ Q ) ) | 
						
							| 9 | 4 5 6 7 8 | syl13anc |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( ( P .\/ Q ) .\/ R ) = ( ( P .\/ R ) .\/ Q ) ) | 
						
							| 10 | 5 7 6 | 3jca |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( P e. A /\ R e. A /\ Q e. A ) ) | 
						
							| 11 |  | simp13 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( S e. A /\ T e. A /\ U e. A ) ) | 
						
							| 12 |  | simp21 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> -. R .<_ ( P .\/ Q ) ) | 
						
							| 13 |  | simp22 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> P =/= Q ) | 
						
							| 14 | 13 | necomd |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> Q =/= P ) | 
						
							| 15 | 1 2 3 | hlatexch1 |  |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ P e. A ) /\ Q =/= P ) -> ( Q .<_ ( P .\/ R ) -> R .<_ ( P .\/ Q ) ) ) | 
						
							| 16 | 4 6 7 5 14 15 | syl131anc |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( Q .<_ ( P .\/ R ) -> R .<_ ( P .\/ Q ) ) ) | 
						
							| 17 | 12 16 | mtod |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> -. Q .<_ ( P .\/ R ) ) | 
						
							| 18 | 4 | hllatd |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> K e. Lat ) | 
						
							| 19 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 20 | 19 3 | atbase |  |-  ( R e. A -> R e. ( Base ` K ) ) | 
						
							| 21 | 7 20 | syl |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> R e. ( Base ` K ) ) | 
						
							| 22 | 19 3 | atbase |  |-  ( P e. A -> P e. ( Base ` K ) ) | 
						
							| 23 | 5 22 | syl |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> P e. ( Base ` K ) ) | 
						
							| 24 | 19 3 | atbase |  |-  ( Q e. A -> Q e. ( Base ` K ) ) | 
						
							| 25 | 6 24 | syl |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> Q e. ( Base ` K ) ) | 
						
							| 26 | 19 1 2 | latnlej1l |  |-  ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) /\ -. R .<_ ( P .\/ Q ) ) -> R =/= P ) | 
						
							| 27 | 26 | necomd |  |-  ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) /\ -. R .<_ ( P .\/ Q ) ) -> P =/= R ) | 
						
							| 28 | 18 21 23 25 12 27 | syl131anc |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> P =/= R ) | 
						
							| 29 |  | simp23 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> Q .<_ ( P .\/ U ) ) | 
						
							| 30 |  | simp133 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> U e. A ) | 
						
							| 31 | 1 2 3 | hlatexchb1 |  |-  ( ( K e. HL /\ ( Q e. A /\ U e. A /\ P e. A ) /\ Q =/= P ) -> ( Q .<_ ( P .\/ U ) <-> ( P .\/ Q ) = ( P .\/ U ) ) ) | 
						
							| 32 | 4 6 30 5 14 31 | syl131anc |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( Q .<_ ( P .\/ U ) <-> ( P .\/ Q ) = ( P .\/ U ) ) ) | 
						
							| 33 | 29 32 | mpbid |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( P .\/ Q ) = ( P .\/ U ) ) | 
						
							| 34 | 33 | breq2d |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( R .<_ ( P .\/ Q ) <-> R .<_ ( P .\/ U ) ) ) | 
						
							| 35 | 12 34 | mtbid |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> -. R .<_ ( P .\/ U ) ) | 
						
							| 36 |  | simp3 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) | 
						
							| 37 | 9 36 | eqbrtrrd |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( ( P .\/ R ) .\/ Q ) .<_ ( ( S .\/ T ) .\/ U ) ) | 
						
							| 38 | 1 2 3 | 3atlem5 |  |-  ( ( ( K e. HL /\ ( P e. A /\ R e. A /\ Q e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. Q .<_ ( P .\/ R ) /\ P =/= R /\ -. R .<_ ( P .\/ U ) ) /\ ( ( P .\/ R ) .\/ Q ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( ( P .\/ R ) .\/ Q ) = ( ( S .\/ T ) .\/ U ) ) | 
						
							| 39 | 4 10 11 17 28 35 37 38 | syl331anc |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( ( P .\/ R ) .\/ Q ) = ( ( S .\/ T ) .\/ U ) ) | 
						
							| 40 | 9 39 | eqtrd |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ P =/= Q /\ Q .<_ ( P .\/ U ) ) /\ ( ( P .\/ Q ) .\/ R ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( ( P .\/ Q ) .\/ R ) = ( ( S .\/ T ) .\/ U ) ) |