Metamath Proof Explorer


Theorem 3biant1d

Description: A conjunction is equivalent to a threefold conjunction with single truth, analogous to biantrud . (Contributed by Alexander van der Vekens, 26-Sep-2017)

Ref Expression
Hypothesis 3biantd.1
|- ( ph -> th )
Assertion 3biant1d
|- ( ph -> ( ( ch /\ ps ) <-> ( th /\ ch /\ ps ) ) )

Proof

Step Hyp Ref Expression
1 3biantd.1
 |-  ( ph -> th )
2 1 biantrurd
 |-  ( ph -> ( ( ch /\ ps ) <-> ( th /\ ( ch /\ ps ) ) ) )
3 3anass
 |-  ( ( th /\ ch /\ ps ) <-> ( th /\ ( ch /\ ps ) ) )
4 2 3 bitr4di
 |-  ( ph -> ( ( ch /\ ps ) <-> ( th /\ ch /\ ps ) ) )