Description: A conjunction is equivalent to a threefold conjunction with single truth, analogous to biantrud . (Contributed by Alexander van der Vekens, 26-Sep-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3biantd.1 | |- ( ph -> th ) |
|
Assertion | 3biant1d | |- ( ph -> ( ( ch /\ ps ) <-> ( th /\ ch /\ ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3biantd.1 | |- ( ph -> th ) |
|
2 | 1 | biantrurd | |- ( ph -> ( ( ch /\ ps ) <-> ( th /\ ( ch /\ ps ) ) ) ) |
3 | 3anass | |- ( ( th /\ ch /\ ps ) <-> ( th /\ ( ch /\ ps ) ) ) |
|
4 | 2 3 | bitr4di | |- ( ph -> ( ( ch /\ ps ) <-> ( th /\ ch /\ ps ) ) ) |